6 The Base Procedure Call Standard

The base standard defines a machine-level calling standard for the A64 instruction set. It assumes the availability of
the vector registers for passing floating-point and SIMD arguments. Application code is expected to conform to one of
three data models defined in this standard; I[LP32, LP64 or LLP64.

6.1 Machine Registers

The Arm 64-bit architecture defines two mandatory register banks: a general-purpose register bank which can be used
for scalar integer processing and pointer arithmetic; and a SIMD and Floating-Point register bank. In addition, the
architecture defines an optional set of scalable vector registers that overlap the SIMD and Floating-Point register bank,
accompanied by a set of scalable predicate registers.

6.1.1 General-purpose Registers

There are thirty-one, 64-bit, general-purpose (integer) registers visible to the A64 instruction set; these are labeled
r0-r30. In a 64-bit context these registers are normally referred to using the names x0-x30; in a 32-bit context the
registers are specified by using w0-w30. Additionally, a stack-pointer register, SP, can be used with a restricted
number of instructions. Register names may appear in assembly language in either upper case or lower case. In this
specification upper case is used when the register has a fixed role in this procedure call standard. Table 2,
General-purpose registers and AAPCS64 usage summarizes the uses of the general-purpose registers in this
standard. In addition to the general-purpose registers there is one status register (NZCV) that may be set and read by
conforming code.

Table 2, General-purpose registers and AAPCS64 usage

Register Special Role in the procedure call standard

SP The Stack Pointer.

r30 LR The Link Register.

r29 FP The Frame Pointer

r19...r28 Callee-saved registers

ri8 The Platform Register, if needed; otherwise a temporary register. See notes.
r1i7 IP1 The second intra-procedure-call temporary register (can be used by call

veneers and PLT code); at other times may be used as a temporary register.

rl6 IPO The first intra-procedure-call scratch register (can be used by call veneers and
PLT code); at other times may be used as a temporary register.

r9...r15 Temporary registers
r8 Indirect result location register
r0...r7 Parameter/result registers

The first eight registers, r0-r7, are used to pass argument values into a subroutine and to return result values from a
function. They may also be used to hold intermediate values within a routine (but, in general, only between subroutine
calls).

Registers r16 (IP0) and r17 (IP1) may be used by a linker as a scratch register between a routine and any subroutine it
calls (for details, see Use of IPO and IP1 by the linker). They can also be used within a routine to hold intermediate
values between subroutine calls.

20
Copyright © 2011, 2013, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.



The role of register r18 is platform specific. If a platform ABI has need of a dedicated general-purpose register to carry
inter-procedural state (for example, the thread context) then it should use this register for that purpose. If the platform
ABI has no such requirements, then it should use r18 as an additional temporary register. The platform ABI
specification must document the usage for this register.

Note

Software developers creating platform-independent code are advised to avoid using r18 if at all possible. Most
compilers provide a mechanism to prevent specific registers from being used for general allocation; portable
hand-coded assembler should avoid it entirely. It should not be assumed that treating the register as callee-saved
will be sufficient to satisfy the requirements of the platform. Virtualization code must, of course, treat the register as
they would any other resource provided to the virtual machine.

A subroutine invocation must preserve the contents of the registers r19-r29 and SP. All 64 bits of each value stored in
r19-r29 must be preserved, even when using the ILP32 data model (Beta).

In all variants of the procedure call standard, registers r16, r17, r29 and r30 have special roles. In these roles they are
labeled IPO, IP1, FP and LR when being used for holding addresses (that is, the special name implies accessing the
register as a 64-bit entity).

Note

The special register names (IPO, IP1, FP and LR) should be used only in the context in which they are special. It is
recommended that disassemblers always use the architectural names for the registers.

The NZCV register is a global condition flag register with the following properties:

*The N, Z, C and V flags are undefined on entry to and return from a public interface.

6.1.2 SIMD and Floating-Point registers

The Arm 64-bit architecture also has a further thirty-two registers, v0-v31, which can be used by SIMD and
Floating-Point operations. The precise name of the register will change indicating the size of the access.

Note

Unlike in AArch32, in AArch64 the 128-bit and 64-bit views of a SIMD and Floating-Point register do not overlap
multiple registers in a narrower view, so g1, d1 and s1 all refer to the same entry in the register bank.

The first eight registers, v0-v7, are used to pass argument values into a subroutine and to return result values from a
function. They may also be used to hold intermediate values within a routine (but, in general, only between subroutine
calls).

Registers v8-v15 must be preserved by a callee across subroutine calls; the remaining registers (v0-v7, v16-v31) do
not need to be preserved (or should be preserved by the caller). Additionally, only the bottom 64 bits of each value
stored in v8-v15 need to be preserved 8; it is the responsibility of the caller to preserve larger values.

The FPSR is a status register that holds the cumulative exception bits of the floating-point unit. It contains the fields
IDC, IXC, UFC, OFC, DZC, I0C and QC. These fields are not preserved across a public interface and may have any
value on entry to a subroutine.

The FPCR is used to control the behavior of the floating-point unit. It is a global register with the following properties.

» The exception-control bits (8-12), rounding mode bits (22-23), flush-to-zero bits (24), and the AH and FIZ bits
(0-1) may be modified by calls to specific support functions that affect the global state of the application.

* The NEP bit (bit 2) must be zero on entry to and return from a public interface.

21
Copyright © 2011, 2013, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.



