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CHAPTER

From its publication in1687 until 1905, Newtonian mechanics reigned supreme. It was
applied to more and more systerns, almost always with complete success. In those rare
instances where Newtonian ideas appeared to fail, it was found that some complication
had been overlooked, and, when this complication was included, Newton could again
account for all the observations.! Newton'’s formulation was supplemented with new
ideas (such as the notion of energy) and recast in different guises\(by Lagrange and
Hamilton), but the foundations seemed unshakeable. Then, toward the end of the
nineteenth century, a few observations were made that seemed inconsistent with the
classical, Newtonian, ideas. Heroic efforts were made to bring these observations into
line with classical physics, butin 1905, Albert Einstein (1879-1955) published his first
paper on the theory that we now call relativity, in which he showed that particles with
speeds approaching the speed of light require a completely new form of mechanics,
as I describe in this chapter. Even at slower speeds, Newtonian mechanics is only
an approximation to the new “relativistic mechanics,” but the difference is usually
so small as to be undetectable. In particular, at the speeds usually encountered on
earth, Newtonian mechanics is completely satisfactory, which explains why it is still
a crucial and interesting part of physics (and justifies the other 15 chapters of this
book)?

! Perhaps the greatest such triumph for Newton was the prediction and discovery of the planet
Neptune: Calculations of the orbit of Uranus (taking account of the other known planets, and based,
of course, on Newtonian mechanics) disagreed with the observed position by some 1.5 minutes of
arc, In 1846, it was shown independently by the English astronomer John Couch Adams (1819—
1892) and the Frenchman Urbain Leverrier (1811-1877) that this discrepancy could be explained
by the presence of a hitherto unnoticed planet outside the orbit of Uranus. Within a few months,
the new planet, now called Neptune, was discovered by the German Johann Galle (1812-1910) at
exactly its predicted position.

2 In writing this chapter on relativity (particularly in the opening sections and the problems), it
was sometimes difficult to resist borrowing ideas from the relativity chapters of Modern Physics, by
Chris Zafiratos, Michael Dubson, and myself (second edition, Prentice Hall, 2003). I am grateful to
Prentice Hall for giving me permission to do so.
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Chapter 15 Special Relativity

15.1 Relativity

Let us first consider the significance of the name “relativity.” A moment’s thought
should convince you that most physical measurements are made relative to a chosen
reference system. That the position of a particle is r = (%, y, z) means that its position
vector has components (x, y, z) relative to some chosen origin and a chosen set of
axes. That an event occurs at time ¢ = 5 s means that ¢ is 5 seconds relative to a
chosen origin of time, ¢ = 0. If we measure the kinetic energy T of a car, it makes a
big difference whether T’ is measured relative to a reference frame fixed on the road or
to one fixed in the car. Almost all measurements require the specification of a reference
frame, relative to which the measurement is to be made, and we can refer to this fact
as the relativity of measurements.

The theory of relativity is the study of the consequences of the relativity of
measurements. At first thought, this would seem unlikely to be a very interesting
topic, but Einstein showed that a careful study of how measurements depend on the
choice of coordinate system revolutionizes our whole conception of space and time,
and requires a complete rethinking of Newtonian mechanics.

Einstein’s relativity is really two theories. The first, called special ‘relativity, is
“special” in that it focuses primarily on unaccelerated frames of reference. The second,
called general relativity, is “general” in that it includes accelerated reference frames.
Einstein found that the study of accelerated frames leads naturally to a theory of
gravitation, and general relativity turns out to be the relativistic theory of gravity.
In practice, general relativity is required only in situations where its predictions
differ appreciably from those of Newtonian gravity. These include the study of the
intense gravity of black holes, of the large-scale universe, and of the effect of the
earth’s gravity on the extremely accurate time measurements needed for the global
positioning system. In nuclear and particle physics, where we consider particles that
move near the speed of light, but where gravity is usually completely negligible,
special relativity is normally all that is needed. In this chapter, I shall treat only the
special theory of relativity3

15.2 Galilean Relativity

Many of the ideas of relativity are present in classical physics, and we have in fact
met several in earlier chapters. Let us review these ideas and recast some of them in
a form more suitable for our discussion of Einstein’s relativity.

As we discussed in Chapter 1, Newton’s laws hold in many different reference
frames, namely, the so-called inertial frames, any one of which moves at constant
velocity relative to any other. We can rephrase this to say that, in classical physics,

3To cover general relativity would require another book. Some good references are: R. Geroch,
General Relativity from A to B, University of Chicago Press, 1978; I. R. Kenyon, General Relativity,
Oxford University Press, 1990; B.FA.Schutz, A First Course in General Relativity, Cambridge
University Press, 1985; and James B. Hartle, Gravity: An Introduction to Einstein's General
Relativity, Addison Wesley, 2003.

Section 15.2 Galilean Relativity

Newton’s laws are invariant (that is, unchanged) as we transfer our attention from
one inertial frame to another. The classical transformation from one frame to a second,
moving at constant velocity relative to the first, is called the Galilean transformation,
S0 a compact way to say the same result is that Newton’s laws are invariant under the
Galilean transformation. Let us first review this claim.

The Galilean Transformation

For simplicity, consider first two frames S and §' that are oriented the same way; that
is, the x” axis is parallel to the x axis, y’ parallel to y, and 2/ parallel to z. Suppose
further that the velocity V of 8’ relative to § is along the x axis. It was a fundamental
assumption of Newtonian mechanics that there is a single universal time ¢. Thus if the
observers in 8 and 8’ agree to synchronize their clocks (and to use the same unit of
time), then ¢’ = ¢, Finally, we can choose our origins O and 0’ so that they coincide
at the time ¢ = ¢’ = 0. This configuration is illustrated in Figure 15.1, where § is a
frame fixed to the ground. (We'll assume that a frame fixed to the earth is inertial —
that is, we’ll ignore the slow rotation of the earth.) The frame 8 is fixed in a train that
is traveling with velocity V along the x axis.

Consider now some event, such as the explosion of a small firecracker, As measured
by observers in § this occurs at position r = (x, y, z) and time #; as measured in &’
itoccurs att' = (x', y', z') and time ¢'. Our first (and very simple) task is to establish
the mathematical relation between the coordinates (x, y, z,t) and (x', ozl ) A
moment’s inspection of Figure 15.1 should convince you that x’ = x — V', and that
y'=yandz' = z. By the classical assumption concerning time, ¥’ = 7, 50 the required
relations are

X'=x—V:

Y=y

et (15:1)
=t

These four equations are called the Galilean transformation. They give the coor-
dinates (x', y', z/, ') of any event as measured in ' in terms of the corresponding
coordinates (x, y, z, t) of the same event as measured in S. They are the mathematical
expression of the classical ideas about space and time.

Vr

o

Figure 15.1  The frame § is fixed to the ground, while 8’ is fixed in a railroad
car traveling with constant velocity V in the x direction. The two origins
coincide, O = O', attime ¢ = #' = 0. The star indicates an event, such as a
small explosion.
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Chapter 15 Special Relativity

The Galilean transformation (15.1) relates the coordinates measured in two frames
amnge& with corresponding axes parallel and with relative velocity along the x axis,
as shown in Figure 15.1 — an arrangement we can call the standard configuration.
This is not, of course, the most general configuration. For example, if the relative
velocity V is in an arbitrary direction, it is easy to see that (15.1) can be rewritten
compactly as

=r-Vt and t'=1. (15.2)

This is still not the most general form of the Galiliean transformation, since we could
rotate the axes, so that corresponding axes were no longer paralle], and we could
dlsplace the origins O or 0’ and the origins of time. However, (15.2) is general enough
for our present purposes.

Using the Galilean transformation (15.2) we can immediately relate the velocities
of an ijoct, as measured in the two frames. If v(¢) = r(¢) is the vclocify of the object
as measured in 8 and v/(¢) is likewise for 8’ then by differentiating (15.2) we find
immediately that (remember that V is constant)

V=v-YV. (15.3)
This is the classical velocity-addition formula, which asserts that, according to the

ideas of classical physics, relative velocities add (or subtract) according to the normal
rules of vector arithmetic.

Galilean Invariance of Newton's Laws

To prove the invariance of Newton's laws under the Galilean transformation, suppose
that the second law holds in frame $; that is, that F = ma, with all three variables

‘measured in 8. Now it is an experimental fact (at least in the domain of classical

mechanics) that measurements of the mass of any object give the same results in all
inertial frames. Thus the mass m’ meéasured in 8 is the same as that measured in
8, and m’ = m. The proof that the same is true for the net force depends, to some

-extent, on one’s definition of force. If we take the view that forces are defined by the

readings on spring balances, then it is clear that the force F’ measured in 8 is the
same as that measured in §, and F' = F. Finally, differentiating (15.3) with respect
to time (and rcmembenng that V is constant, by assumpnon) we see that a’ = a. We
have now proved that each of the variables F/, m’, and a’ of frame &' is equal to the
corresponding variable F, m, and a of frame 8'. Therefore, if it is true that F = ma, it
is also true that F' = m’a’. That is, Newton’s second law is invariant under the Galilean
transformation. I leave it as an exercise (Problem 15.1) to prove that the same is true
of the first and third laws. The invariance of the laws of mechanics under the Galilean
transformation was known to Galileo, who used it to argue that no experiment could
tell whether the earth was “really” moving or “really” at rest, and hence that Kepler’s
sun-centered view of the solar system was just as reasonable as the traditional earth-

" centered view.

Section 15.2  Galilean Relativity

Galilean Relativity and the Speed of Light

‘While Newton's laws are invariant under the Galilean transformation, the same is not
true of the laws of electromagnetism. Whether we write them in their compact form as
Maxwell’s four equations, or in their 6riginal form (as Coulomb’s law, Faraday’s law,
and so on), they can be true in one inertial frame, but if they are, and if the Galilean

transformation were the correct relation between different inertial frames, then they

could not be true in any other inertial frame. By far the quickest way to venfy this
claim is to recall that Maxwell’s equations imply that light (and, more generally, any
electromagnetic wave) propagates through the vacuum in any direction with speed

1

+/ €otto

c=

=3.00 x 10° mss, (15.4)

where €, and u, are the permittivity and permeability of the vacuum. Thus if
Maxwell’s equations hold in frame 8, then light must travel-at the same speed ¢
in any direction, as measured in 8. But now consider a second frame &', traveling
at speed V along the x axis of §, and imagine a beam of light traveling in the same
direction. In 8 the light’s speed is v = c. Therefore, in §' its speed is given by the
classical velocity-addition formula (15.3) as

v=c-V,

as shown on the left of Figure 15.2. Similarly, a beam of light traveling to the left will
have speed v = ¢ in 8, but v/ = ¢ + V in §. Depending on its direction, any beam of
light will have speed v’ (as measured in 8’) that varies anywhere between ¢ — V and
¢ + V. Therefore, Maxwell’s equations cannot hold in the inertial frame §'.

Figure 15,2 Two frames § and 8’ in the standard configuration with relative velocity -
V. Two beams of light approach the car from opposite directions. If, as measured
in 8, the light has speed ¢ in either direction, then the classical velocity-addition
formula implies that, as measured in §’, it has speed ¢ — V traveling to the right,
and ¢ + V traveling to the left.

If the Galilean transformation were the correct transformation between inertial
frames, then although Newton’s laws would hold in all inertial frames, there could
only be one frame in which Maxwell’s equations hold. This supposed unique frame,
in which light would travel at the same speed in all directions, is sometimes called the
ether frame.*

4The origin of the name is this: It was assumed that light must propagate through a medium, in
much the same way that sound travels through the air. Since no one had ever detected this medium
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The Michelson—Morley Experiment

The state of affairs just described, with the laws of mechanics valid in all inertial
frames, but the laws of electromagnetism valid in a unique frame, was well under-
stood toward the end of the nineteenth century. It was regarded by some (most notably
Einstein) as unpleasing, and it was eventually shown by Einstein to be wrong. Nev-
ertheless, it was logically consistent, and most physicists took for granted that there
could be only one frame in which the speed of light had the same value ¢ in all di-
rections. Since the earth travels at a considerable speed in a céntinually changing
direction around the sun, it seemed obvious that the earth must spend most of its time
moving relative to the ether frame and hence that the speed of light as measured on
earth should be different in different directions. The effect was expected to be very
small. (The earth’s orbital speed i V 2 3 x 10* mJs, large by terrestrial standards,
but very small compared to ¢ =3 x 108 m/s. Thus the fractional variation, between
¢~V and c + V, was expected to be very small.) Nevertheless, in 1880, the Amer-
ican physicist Albert Michelson (1852-1931), later assisted by the chemist Edward
Morley (1838-1923), devised an interferometer that should have easily detected the
expected differences in the speed of light. To their surprise and dismay they found

_absolutely no variation.

Their experimerits, and many different experiments with the same objective, have
been repeated and have never found any reproducible evidence of variations in the
speed of light relative to the earth. With hindsight, it is easy to draw the right
conclusion: Contrary to all expectations, the speed of light is the same in all directions
relative to an earth-based frame, even though the earth has different velocities at
different times of year. In other words, it is not true that there is only one frame in
which light has the same speed in all directions.

This conclusion is so surprising that is was not taken seriously for twenty years.
Instead, several ingenious theories were advanced to explain the Michelson-Morley
result while preserving the idea of a unique ether frame. For example, the so-called
ether-drag theory held that the ether — the medium through which light was sup-
posed to propagate — was dragged along with the earth, in much the same way the
atmosphere is dragged along. This would imply that earth-bound observers are at
rest relative to the ether and should measure the same speed of light in all directions.
However, the ether-drag theory was incompatible with the phenomenon of stellar aber-
ration.’ None of these alternative theories was able to explain all of the observed facts
(at least, not in a reasonable and economical way), and today almost all physicists
accept that there is no unique ether frame and that the speed of light is a universal
constant, with the same value in all directions in all inertial frames. The first person to

and since light could travel through seemingly empty space, the medium clearly had most unusual
properties, and was named “ether” after the Greek for the stuff of the heavens. The “ether frame”
was the frame in which the supposed ether was at rest.

5The ether-drag theory would require that light entering the earth’s envelope of ether would be
bent. This would contradict stellar abberation, in which the apparent position of any one star moves
around a small circle as the earth moves around its circular orbit — in a way that makes clear that
the light from the star travels in a straight line as it approaches the earth.

Section 15.3 The Postulates of Special Relativity

accept this surprising idea whole-heartedly was Einstein, as we now discuss. In par-
ticular, we shall see that the universality of the speed of light requires us to reject the
Galilean transformation and the classical picture of space and time on which it was
based. This, in turn, will require us to modify much of our Newtonian mechanics.

15.3 The Postulates of Special Relativity

The special theory of relativity is based on the acceptance of the universality of the
speed of light, as suggested by the Michelson-Morley éxperiment.® Einstein proposed
two postulates, or axioms, expressing his conviction that all the laws of physics should
hold in all inertial frames, and from these postulates, he developed his special theory
of relativity.

Before we discuss the postulates of relativity, it would be good to agree on what
we mean by an inertial frame:

Notice that I have not yet specified what “all the laws of physics” are. Following
Einstein, we shall use the postulates of relativity to help us decide what the laws
of physics could be. (As always, the ultimate test will be whether they agree with
experiment.) It will turn out that one of the classical laws that carries over into
relativity is the law of inertia, Newton’s first law. Thus our newly defined inertial
frames are in fact the familiar “unaccelerated” frames, where an object subject to no
forces travels with constant velocity. As before, a frame fixed to the earth is (to a good
approximation) inertial; a frame fixed to an accelerating rocket or a spinning turntable
is not. The big difference between the inertial frames of relativity and those of classical
mechanics is the mathematical relation between different frames. In relativity, we
shall find that the classical Galilean transformation must be replaced by the so-called
Lorentz transformation.

Notice also that I have specified that an inertial frame is one where the physical laws
hold “in their usual form.” As we saw in Chapter 9, one can sometimes modify physical
laws so that they hold in noninertial frames as well. (For example, by introducing the
centrifugal and Coriolis forces, we could use Newton’s second law in arotating frame.)
[t is to exclude such modifications that I added the qualifier “in their usual form.”

6 Whether Einstein actually knew about the Michelson-Morley result when he was formulating
his theory is not clear. There is some évidence that he did, but it seems clear that his main motivation
was the conviction that Maxwell's equations should hold in all inertial frames. Whether he knew or
not affects neither Einstein’s amazing accomplishment nor the importance of the Michelson-Morley
result as beautifully clear evidence in favor of Einstein’s assumptions.
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The first postulate of relativity asserts the. existence of many different inertial
frames, traveling at constant velocity relative to one another:

Another way to say this is that the laws of physics are invariant as we transfer our
attention from one frame to a second one moving at constant velocity relative to the
first. This is what we proved for the laws of mechanics, but we are now claiming it
for all the laws of physics.

Another popular statement of the first postulate is that “there is no such thing as
absolute motion.” To understand this, consider two frames, § attached to the earth
and &’ attached to a rocket coasting at constant velocity relative to the earth. A natural
question is whether there is any meaningful sense in which we could say that § is
really at rest and 8 is really moving (or vice versa). If the answer were “yes,” then
we could say that § is absolutely at rest and that anything moving relative to 8 is in
absolute motion. However, this would contradict the first postulate of relativity: All
of the laws observable by scientists in 8 are equally observable by scientists in 8'; any
experiment that can be performed in § can equally be performed in §'. Therefore, no
experiment can show which frame is really moving. Relative to the earth, the rocket
is moving; relative to the rocket, the earth is moving; and this is all we can say.

Yet another statement of the first postulate is that among all the inertial frames,
there is no preferred frame. The laws of physics single out no one frame as being in
any way more special than any other. _

The second postulate specifies one of the laws that holds in all inertial frames:

- The lig
- inertialframés.

This is, of course, the Michelson-Morley result.

Although the second postulate flies in the face of our everyday experience, it is by
now a firmly established experimental fact. As we explore the consequences of Ein-
stein’s postulates we are going to encounter several surprising predictions, all of which
seem to contradict our experience (for example, the phenomenon called time dilation,
describéd in the next section). If you have difficulty accepting these predictions, there
are two points to bear in mind: First, they are all logical consequences of the sec-
ond postulate. Thus, once you have accepted the latter (surprising, but indisputably
true), you have to accept all of its logical consequences, however counterintuitive they
may seem. Second, all of these surprising phenomena (including the second postu-
late itself) have the subtle property that they become important only when objects
travel with speeds comparable to the speed of light. In everyday life, with all speeds

Section 15.4 The Relativity of Time; Time Dilation

much less than c, these phenomena simply do not show up. In this sense, none of
the surprising consequences of Einstein’s postulates really conflict with our everyday
experience.

15.4 - The Relativity of Time; Time Dilation

Measurement of Time in a Single Frame

We are going to find that the second postulate forces us to abandon the classical notion
of a single universal time. Instead, we shall find that the time of any one event, as
measured in two different inertial frames, is in general different. This being the case,
we need first to be quite clear what we mean by time, as measured in a single frame.

I shall take for granted that we have at our disposal lots of reliable tape measures
and clocks. The clocks need not be identical, but they must have the property that,
when brought together at the same point, at rest in the same inertial frame, they agree
with one another. Let us now consider a single inertial frame 8, with origin O. We can
station a chief observer at O with one of our clocks, and she can easily time any nearby
event, such as a small explosion, since she will see it essentially instantaneously. To
time an event farther away from the origin is harder, since light from the event has to
travel to O before she can sense it. If she knew how far away the event occurred, then
she could calculate how long the signal took to reach her (she knows that light travels
at speed c) and subtract this from the time of arrival to give the time of the event. A
simpler way to proceed (in principle anyway) is to employ a large number of helpers
stationed at regular intervals throughout the region of interest and each with his own
clock. The helpers can measure their distances from O, and we can check that their
clocks are synchronized with the clock at O by having the chief observer send out a
light signal at an agreed time (on her clock). Each helper can calculate the time taken
by the signal to reach him and (allowing for this transit time) check that his clock
agrees with the clock at O.

With enough helpers, stationed closely enough together, there will be a helper
close enough to any event to time it essentially-instantaneously. Once he has timed
it, he can, at his leisure, inform everyone else of the result by any convenient means
(such as a telephone). In this way, any event can be assigned a unique and well-defined
time ¢ as measured in the frame 8. In what follows, I shall assume that any inertial
frame § comes with a set of rectangular axes Oxyz and a team of helpers stationed at
rest throughout § and equipped with synchronized clocks. This allows us to assign a
position (x, y, z) and a time ¢ to any event, as observed in the frame $:

Time Dilation

Letus now compare measurements of times made by observers in two different inertial
frames. Consider our familiar two frames, § anchored to the ground and 8’ traveling
with a train in the x direction at speed V relative to §. We now examine-a thought
experiment (or gedanken experiment, from the German) in which an observer on
the train sets off a flashbulb on the floor of the train. The light travels to the roof, where
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&
ﬂash/ B beep

(a)

Figure 15.3  (a) The thought experiment as seen in frame 8'. The light travels
straight up and down again, and the flash and beep occur at the same place. (b) As
seenin 8, the flash and beep are separated by a distance V At. Notice thatin § two
observers are needed to time the two events, since they occur in different places.

it is reflected back and returns to its starting point, where it strikes a photocell and
causes an audible “beep.” We wish to compare the times, At and At’, as measured
in the two frames, between the flash as the light leaves the floor and the beep as it
returns.

As seen in the frame 8/, our expeﬁment is shown in Figure 15.3(a). If the height of
the train is A, then, as seen in &', the light travels a total distance 2 at speed ¢ (second
postulate) and so takes a time

At = % (15:5)

e
This is the time between the flash and the beep, as measured by an observer in 8’
(provided, of course, his clock is reliable).

As seen in 8, our experiment is shown in Figure 15.3(b). In particular, the same
beam of light is seen to travel along the two sides AB and BC of a triangle. If At is the
time between the flash and the beep (as measured in 8), the side AC has length V At.
Thus the triangle AB D has sides’ k, V At/2, and cAt/2. (Notice that this is where

we use the second postulate, that the speed of light is ¢ in either frame.) Therefore,
(c At/2)2 = h* + (VAL/2)%,
which we can solve to give

2h 2k 1
cI-V2 ¢ J1-p?

At =

(15.6)

where I have introduced the useful abbreviation

which is just the speed V measured in units of c.

71 take for granted that the height of the train is the same in either frame. We'll prove this shortly.

NI I Iy
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The striking thing about the two results (15.5) and (15.6) is that they are not equal.
The time between the same two events (the flash and the beep) has different values as
measured in the two different inertial frames. Specifically,

'l
B il e (15.8)

Ny

We derived this result for a thought experiment with a flash of light reflected back to its
source by a mirror on the ceiling of the railroad car, but the conclusion applies to any
two events that occur at the same place in the train. Suppose, for instance, an observer
atrestin 8" were to shout “Good” and a moment later “Grief.” In principle, we could
ignite a flashbulb at the “good,” and arrange a mirror which would reflect the light
back to arrive at the moment of “grief.” Therefore, the relation (15.8) must apply to
these two events, the “good” and the “grief.” Since the timing of the two events cannot
depend on whether we actually did the experiment with the light and the beeper, we
conclude that the relation (15.8) must apply to any two events that occur at the same
place in the frame §'.

You should avoid thinking that the clocks in one of our frames are somehow
running incorrectly — on the contrary, it was essential to our argument that all clocks,
in both frames, were running correctly. Further, it makes no difference what particular
kinds of clock we used, so the conclusion (15.8) applies to all (accurate) clocks. That
is, time itself, as measured in the two frames, is different in accordance with (15.8).
As we shall discuss shortly, this surprising conclusion has been verified repeatedly.

If the frame 8’ is actually at rest (relative to 8), then V = 0, so 8 = 0, and (15.8)
reduces to At' = At. That is, there is no difference in the times unless 8’ is actually
mov‘ing relative to §. Moreover, at normal terrestrial speeds, V << ¢, so 8 < 1 and
the denominator in (15.8) is very close to one. That is, at the speeds of our everyday
experience, the two times are very nearly equal — so close that it would be almost
impossible to detect any difference, as the following example shows.

EXAMPLE 15.1 Time Differences for a Jet Plane

Suppose that the pilot of a jet traveling at a steady V = 300 m/s arranges to set
off a flashbulb at intervals of exactly one hour (as measured in his reference
frame). If we arrange two observers on the ground to check this, what would
they measure for the time At between two successive flashes? (Take the ground
to be an inertial frame; that is, ignore effects of the earth’s rotation.)

The required interval is given by (15.8) with A’ = lhourand 8 =V/c =
107, So

At lh

At= ==
J1-p2 ~J1-1071
~1hx (1+4x107?) =1h+18x107°s
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where in going to the second line, I have used the binomial approximation.® In
this experiment, the time difference is less thari 2 nanoseconds (1 ns=1077s). It
| s not hard to see why classical physicists had failed to detect such differences!

As we increase V, the difference between the times in (15.8) gets bigger, and‘if we

let V approach ¢, we can make the difference as large as we please. For example, if
V = 0.99¢, then 8 = 0.99 and (15.8) gives At’ ~ 7At. Speeds this high are routinely
achieved by the accelerators at particle-physics labs, and the predicted time difference
is precisely confirmed.

If we put V = (that is, 8 = 1) in (15.8), we would get the absurd result At =
At/0, and if we put V > ¢ (thatis, B > 1), we would get an imaginary value for At'.
These results suggest that V must always be less than ¢,

V.26

a suggestion that proves correct and is one of the most profound results of relativity:
The relative speed of two inertial frames can never equal or exceed c. That is, the
speed of light, in addition to being the same in all inertial frames, is also the universal
speed limit for the relative motion of any two inertial frames.

" The factor 1/+/1— B2 occurs so often in relativity, it usually given its own

name, y,

It is useful to remember that this new factor always satisfies y > 1, and as # — 1(that
is, V=>c¢)y — oo. .

In terms of the parameter y the result (15.8) can be written a little more com-
pactly as :

At =y At > Ar' (15.10)

- The asymmetry of this result (that A¢’ is never more than At) seems at first glance to

violate the postulates of relativity, since it suggests a special role for the frame 8’ —
namely, that 8’ is the special frame in which the time interval is minimum. However,
this is just as it should be, since in our thought experiment 8’ is special, because
it is the frame where the two events in question (the flash and the beep) occur at the
same place. (This asymmetry was implicit in Figure 15.3, which showed one observer
measuring At’, but two measuring Az.) To emphasize this asymmetry, the time At’ is
often renamed At, and (15.10) rewritten as

since most calculators cannot tell the difference between 1 and 1 — 10~'2,

5
i
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The subscript on At, is to emphasize that Az, is the time elapsed on a clock at rest in
the special frame where the two events in question occurred at the same place. This
time is often called the proper time between the two events. In (15.11), At is the
corresponding time measured in any frame and is always greater than or equal to the
proper time At,,. For this reason, the effect implied by (15.11) is called time dilation
and can be loosely stated by saying that a moving clock is observed to run slow. As
measured by observers on the ground, a clock in the moving train is found to run slow.

Finally, I should emphasize the fundamental symmetry between any two inertial
frames. We chose to do our thought experiment in a way that gave the frame 8’ a
special role. (It was the frame in which the flash and beep occurred at the same place.)
But we could have done the experiment the other way round, with the flashbulb, mirror
and beeper at rest on the ground, and in this case, we would have found the opposite
effect, that At’ = y At. The advantage of writing the time-dilation formula in the form
(15.11) is that it avoids the problem of remembering which is frame 8, and which §’;
the subscript on At, always flags the proper time — the time measured in the frame
in which the two events were at the same place.

Evidence for Time Dilation

Time dilation was predicted in 1905 but was not experimentally verified until 1941,
by B. Rossi and D. B. Hall.® The problem was, of course, to get a clock traveling
sufficiently fast to show a measurable dilation. Rossi and Hall exploited the natural
clocks that come with unstable subatomic particles, which decay (on average) after
a definite time, characteristic of the particle. The lifetime of an unstable particle can
be specified by its half-life, 7,/,, the time in which half of a large number of the
particles will decay. The muon is an unstable particle that is created in the earth’s upper
atmosphere when cosmic ray particles (mostly protons and alpha particles) from outer
space collide with atmospheric atoms. Many of these muons have speeds quite close
to the speed of light, and they live long enough to find their.way down to the earth’s
surface. The muon had been discovered in 1935 by Carl Anderson in his studies of
cosmic rays. By 1941 its half-life was known to be about t,, = 1.5 us, meaning that
half of a sample of muons at rest would decay in this time. If time dilation is correct,
the half-life for a moving muon (as measured by earth-bound observers) should be
larger by the factor y as in (15.11). For example, if the muon had speed 0.8¢, then
y = 1.67, and the muon’s half-life should be

11/2(at speed 0.8¢) = 1.67 x 1, 5(at rest) = 2.5us. -

Rossi and Hall were able to separate out cosmic-ray muons according to their speed
and they could find their half-lives by measuring how many of them survived the
journey through the atmosphere. Although their measurements had quite large ex-
perimental errors, they were nonetheless good enough to verify Einstein’s prediction
(15.11) and to exclude the classical assumption of a single universal time.

9B. Rossi and D. B. Hall, Physical Review, vol. 59, p. 223 (1941).
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A test of time dilation using man-made clocks had to await the development of
superaccurate atomic clocks. In 1971 four portable atomic clocks were synchronized
with areference clock at the U. S. Naval Observatory in Washington DC and then flown
around the world in a jet plane and returned to the Naval Observatory. The observed
discrepancy between- the reference clock and the portable clocks was (273 + 7) ns
(averaged -over the four clocks) in excellent agreement with the predicted value
(275 £ 21) ns.10

Tests of time dllanon——usmg both the natural clocks of unstable particles and

man-made atomic clocks — have been repeated with ever-increasing precision, and
there is now no doubt'that the relativity of time, as embodied in (15.11), is true.
Another important test that is carried out thousands of times every day is the Global
Positioning System (GPS). This system, which is used by airplanes, ships, cars, and
hikers to find their positions within a few meters, times the arrival of signals from
24 GPS overhead satellites at the observer’s recéiver and calculates the receiver's
position from the known positions of the satellites. To find the position within a few
meters requires an accuracy of a few nanoseconds, which requires that allowances
be made for the relativistic differences between the times of the satellite and earth-
bound reference frames. The success of the GPS is a daily tribute to the correctness
of relativity.!!

. 156.5 Length Contraction

The postulates- of relativity have forced us to the conclusion that time is relative —
the time between two given events is different when measured in different inertial
frames — and, even more important, this conclusion is born out by experiment. This,
in turn, implies that the length of an object is likewise dependent on the frame in which
it is measured. To see this, we’ll conduct a second thought experiment with the train
of Figure 15.3, this time measuring its length. For an observer (let’s call him Q) on
the ground (frame §) the simplest procedure is probably to measure the time At for
the train to pass him and calculate the length as!2

I'=VAt. (15.12)

19See J. C. Hafele and R. E. Keating, Science, vol. 177, p. 166 (1972). Two trips were made, one
going west and the other going east, both with satisfactory results. The numbers quoted here are for
the more decisive westward trip. This experiment was actually a test of general, as well as special,
relativity, since the predicted discrepancy has an appreciable contribution from gravitational effects.

! For a readable account of the large role of relativity in the GPS, see N. Ashby, Physics Today,
May 2002, p. 41. As described there, there are important contributions from general, as well as
special, relativity. Thus, the success of the GPS is a test of-both theories.

"2 With so many of the familiar classical ideas being questioned, you are entitled to ask if it
is legitimate to use the classical formula (15.12). However, this is just the definition of velocity
(velotity = distance/time), and is certainly valid in any one reference frame (as long as we measure
all quantities in this same frame).

Section 15.5 Length Contraction

To find the length I’ of the train as measured in the train’s rest frame, an observer
on the train could simply use a long tape measure. However, for comparison with
(15.12), it is convenient to use a different method. We can station two observers on
the train, one at the front and another at the back, and have them record the times at
which they pass the observer Q on the ground. The difference At’ between these two
times is the time (as measured in frame §') for the train to pass observer Q, so the
length of the train (again as measured in 8') is just

I'=VAt. (15.13)

Notice that we are making an important assumption here, that the speed of frame §
relative to 8' is the same as the speed V of 8’ relative to 8. (The relative velocities
are in opposite directions, but their magnitudes are the same.) This is true in classical
mechanics, and it is also true in relativity, where it follows from the two postulates.
The details of the argument require some care, but the gist is this: Consider the
transformation from frame 8 to 8'.'We’ll denote it by (8 — 8') temporarily. Suppose
that, before making this transformation, we were to rotate our axes through 180°about
the y (or z) axis, then make the transformation, and then rotate back again. The effect
of the rotations is to reverse the direction of the x axis (and finally rotate it back again).
The net effect of all three operations is precisely the transformation (8’ — 8). Since
the rotations certainly don’t change any speeds, we've proved that the speed of &’
relative to $ is the same as that of § relative to .

Comparing (15.12) with (15.13), we see that, since the times At and Az’ are
unequal, the same has to be true of the lengths / and I'. To quantify the difference,
we must be careful to get the relation between At and At the right way around.
These two times are the times (as measured in § and 8') between two events: “front
of train opposite observer 0™ and “back of train opposite-observer Q. These two
events occur at the same place in frame §, so At is the proper time, and At' = y At.
Inserting this into (15.13) and comparing with (15.12), we see that I’ = y/ or

l=—x<l. (15.14)
4

The length of the train as measured in § is less than that measured in 8’ (unless V = 0).
Like time dilation, the effect (15.14) is asymmetric, reflecting the asymmetry of
the experiment. The frame §' is special, since it is the unique frame where the object

. being measured (the train) is at rest. [We could, of course, have done the experiment

the other way round. If we had measured the length of a building that is at rest on the
ground, then the roles of / and I’ would have been reversed.] To avoid confusion as to
which frame is which, it is common to rewrite (15.14) as
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where /, dendtes the length of an object measured in the object’s rest frame (the
frame in which the object is at rest), while / is the length in any frame. The length [,
is called the object’s proper length. Since I < I, (if V 5 0), this difference in lengths
is called the length contraction (or the Lorentz contraction, or Lorentz~Fitzgerald
contraction, after the two physicists — the Dutch Hendrik Lorentz, 1853-1928, and
the Irish George Fitzgerald, 1851-1901 — who first suggested there must be some
such effect.) The result can be loosely paraphrased by saying that a moving body.is
observed to be contracted.

Like time dilation, length contraction is a real effect, well established by exper-
iment. Since the two effects are so intimately connected, any evidence for one can
be taken as evidence for the other. In particular, the decay of a high-speed unstable
particle, when viewed in the particle’s rest frame, can be interpreted as clear evidence
for length contraction. (See Problem 15.12.)

Lengths Perpendicular to the Relative Velocity

The length contraction just derived applies to lengths in the direction of the relative
velocity, such as the length of a train in the direction of motion. It is easy to see that
there can be no analogous contraction or expansion of lengths perpendicular to the
motion, such as the height of the train. Suppose for example there were a contraction
and imagine two observers Q standing at rest in 8 and Q' in §'. Suppose further that
Q and Q' are equally tall (when at rest) and that O’ is holding a knife exactly level
with the top of his head. If there is a contraction, then as measured by O, observer
Q' will be shortened as he rushes past, and Q will be scalped, or worse, as the knife
goes by. But, unlike our previous thought experiments, this experiment is completely
symmetric between the two frames: There is just one observer in each frame, and the
only difference is the direction of the relative velocities. Therefore, it must also be
that, as seen by Q’, it is Q who is contracted; so the knife misses Q, and Q is not
scalped. The assumption of a contraction has led us to a contradiction and there can
be no contraction. A similar argument excludes the possibility of expansion, and, in
fact, the knife just scrapes past Q as seen in either frame. We conclude that lengths
perpendicular to the relative motion are unchanged. The length-contraction formula
(15.15) applies only to lengths parallel to the relative velocity.

15.6 The Lorentz Transformation

ceording to the classical notions of space and time, we saw that the mathematical
elation between coordinates in two inertial frames $ and §' is the Galilean transfor-
mation (15.1). In relativity, this cannot be the correct relation. (For example, time
dilation contradicts the equation ¢ = ¢’.) However, we can deduce the correct relation
using an argument similar to the one that we used in connection with Figure 15.1 to
derive the Galilean result. We imagine two frames, $ attached to the ground and &'
attached to a train moving with speed V. relative to 8. We imagine, further, the explo-
sion of a firecracker, which leaves 4 burn mark on the wall of the railroad car at a point

Section 15.6 The Lorentz Transformation

measured in § measured in §'

Figure 15.4  The coordinate x” is the horizontal distance, measured in §', between

L.e origin O' and the bumn mark at P’, The distances x and V't are both measured
in 8 at the time ¢ (measured in 8) of the explosion,

P’. The coordinates of this explosion are (x, y, z, 1) as measured by observers in S
and (x', y/, 2/, ') in §'. Our object is to find formulas for x', y/, 2/, and ¢’ in terms of
X, ¥, z, and t. The thought experiment is illustrated in Figure 15.4, which is just like
Figure 15.1 except that we now know we must be very careful to identify the frames
(8 or 8') relative to which the various distances are measured.

Since lengths perpendicular to the relative velocity are the same in both frames,
we can immediately write

Y=y and Zi=iz (15.16)

exactly as with the Galilean transformation. The coordinate x’ is the horizontal dis-
tance between the origin O’ and the burn mark at 2’, as measured in 8'. The same
distance as measured in 8 is x — V¢, since x and V¢ are the distances from O to P’
and from O to O’ at the instant  of the explosion (measured in 8). Therefore, by the
length-contraction formula (15.15) (x' is the proper length here)

X—Vi=xly

or
x'=yx = Vi), (15.17)

This is the third of the four equations that we need. Notice that if V' <-ctheny =1
and (15.17) reduces to the Galilean relation x’ = x — V't,

Finally, to get an equation for ¢’ we can use a simple trick. We could repeat the
previous argument with the roles of 8 and §’ exchanged. That is, we could let the
explosion burn a mark at a point P on a wall fixed in 8. Arguing as before, we would
get the result

x=y + V", (15.18)

(Notice that we could get this result directly from (15.17) by exchanging the primed
and unprimed variables and replacing V by —V.) Substituting (15.17) into (15.18),
we can eliminate x’ and solve for ¢/, to give (as you should check)

=yt = Vx/h). (15.19)

This is the required equation for #'. When V <« ¢, we can neglect the second term and
¥ =1, 50 (15.19) reduces to the Galilean relation ¢’ = ¢.
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Collecting together the results (15.16), (15.17), and (15.19), we get the required

-/P\:‘our equations: La"”*? Tn" 1 6’ ﬂ‘}

t‘i?
(¢ V"/ca)
These four equations are called the Lorentz transformation or the Lorentz—Emstem
transformation, in honor of Lorentz, who first proposed them, and Einstein, who
first interpreted them correctly. The Lorentz transformation.gives the coordinates
(x', ¥, 2/, t') of an event, as measured in &', in terms of its coordinates (x, y, z, t)
as measured in 8. It is the correct relativistic version of the classical Galilean trans-
formation (15.1).
If we wanted to know the coordinates (x, y, z, t) in terms of (x/, ', 2/, t'), we
could solve the four equations (15.20), but a simpler way is just to exchange primed
- and unprimed variables and replace V by —V. Either way, the result is the inverse
Lorentz transformation

x=yx'+ V)
ekl
a2 (15.21)

z=27

t=y( + Vx'jc?).

The Lorentz transformation expresses all of the properties of space and time that
follow from the postulates of relativity. Using it, one can calculate all of the kinematic
relations between measurements made in different inertial frames. There are several
examples of its use in the problems at the end of this chapter and here are a couple
more.

EXAMPLE 15.2 Rederiving Length Contraction

Use the Lorentz transformation to rederive the length contraction formula
(15.15). (Note that this will not give an alternative derivation of length contrac-
tion, since length contraction was used in deriving the Lorentz transformation.
Rather we shall just get a consistency check.)

Consider our usual two frames, 8 fixed to the ground and 8’ ﬁxed to a train
traveling along the x axis with speed V relative to 8. We wish to compare the
lengths of the train as measured in § and 8. The measurement in 8’ is easy, since
the train is at rest in this frame. An observer can, at his leisure, measure the x’ -

ﬂ o«-}aom fssume . Mmoves 1n
$he *X dicection ol

®
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coordinates x{ and x} of the back and front of the train, and its length is just the
difference ' = x, — x|. This length is the proper length of the train, so

l=llexe2) (15.22)

The measurement in 8 is harder since the train is moving. We could, with enough
care, station two observers O, and Q, beside the track so that the back of the
train passes Q) at the exact same instant (f; = 1,) that the front passes Q,. The
length as measured in § is then just

l=x = 2

Now, applying the Lorentz transformation (15.20) to the event “front of train
passes 0, we get

=yx— V)
and, for the event “back of train passes Q,”
=y —Vn).
Subtracting and remembering that t, =, we find
lh=x,—x=y(x—x) =yl

or | =ly/y, which is the length contraction (15.15).

Our next example is one of the many seeming paradoxes of relativity.

EXAMPLE 15.3 A Relativistic Snake

A relativistic snake, of proper length 100 cm, is traveling across a table at
V = 0.6¢. To tease the snake, a physics student holds two cleavers 100 cm apart
and plans to bounce them simultaneously on the table so that the left one lands
justbehind the snake’s tail. The student reasons as follows: “The snake is moving
with 8 = 0.6, so its length is contracted by the factor y = 5/4 (check this) and its
length measured in my frame is 80 cm. Therefore, the cleaver in my right hand
bounces well ahead of the snake, which is unhurt.” This scenario is shown in
Figure 15.5. Meanwhile the snake reasons thus: “The cleavers are approaching
me at B = 0.6, so the distance between them is contracted to 80 cm, and I shall
certainly be cut to pieces when they fall.” Use the Lorentz transformation to’
resolve this paradox.

Let us choose frames § and 8’ in the usual way. The student is at rest in 8,
with the cleavers at x, = 0 and xgx = 100 cm. The snake is at rest in 8/, with
its tail at x’ = 0 and its head at x’ = 100. To resolve the dispute, we must find
where and when the two cleavers fall, as observed in § and in §'.

In S the cleavers fall simultaneously at £ = 0. At this time the snake’s tail is
at x = 0. Since his length is 80 cm, his head has to be at x = 80 cm. [You can
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foO x=80 xg =100

Figure 15,5 The snake paradox, as seen in the student’s frame 8. The
cleavers fall simultaneously at time ¢ = 0.

check this, if you want, using the transformation equation x' = y(x = Vi), with
x =80 cm and t = 0, this gives the correct value x’ = 100 cm.] As observed in
8, the experiment is as shown in Figure 15.5. The right cleaver falls comfortably
ahead of the snake, the student is right, and the snake is unharmed.

What is wrong with the snake’s reasoning? To answer this, we must examine
the coordinates and times at which the two cleavers bounce, as observed in §'.
The left cleaver falls at ¢, = 0 and x; = 0. According to the Lorentz transfor-
mation (15.20), the coordinates of this event, as seen in 8’ are

1, =y, — Vx /D) =0
and
x, =y - V) =0.

As expected, the left cleaver falls just behind the snake’'s tail, at time t’L =0, as
shown in Figure 15.6(a).

So far there are no surprises. However, the right cleaver falls at 1z = 0 and
xg = 100 cm. Therefore, as seen in &', it falls at a time given by the Lorentz
transformation as

te=y(tg — Vxg/c?) = -2.5ms.

(Check the numbers yourself.) The crucial point is that, as seen in &', the o

one, it does not necessarily hit the snake, even though they are only 80 cm apart

#.=0

e
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(in this frame). In fact, the position at which the right cleaver falls is given by
the Lorentz transformation as

xp=y(xg— Vig) =125cm.

The right cleaver does indeed miss the snake!

The resolution of this paradox, and many similar paradoxes, is that two events
that are simultaneous in one frame are not necessarily simultaneous in a different
frame — an effect sometimes called the relativity of simultaneity. As soon as
we recognize that the two cleavers fall at different times in the snake’s frame,
there is no longer any problem understanding how they can both contrive to miss
the snake.

Stop Lea Jc'n}

cleavers do not fall at the same time. Since the.right cleaver falls before the left

xp=0 x' =100 xp=125

Figure 15.6 The snake paradox, as measured in the snake’s frame §'. The
cleavers move to the left with speed V', and the right one falls 2.5 ns before
the left one. Even though the cleavers are only 80 cm apart, this lets them
land 125 cm apart.
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15.7 The Relativistic Velocity-Addition Formula

As our next, and very important, application of the Lorentz transformation, let us use
it to derive the relativistic velocity-addition formula. This formula is the answer to
the following question: If an object — an electron, a baseball, 2 planet— is moving
with velocity v relative to an inertial frame §, how can we calculate its velocity \4
relative to some other frame 8’2 In classical physics, the answer to this question is the
classical velocity-addition formula: If V denotes the velocity of 8/ relative to 8, then
v/ =v — V. (Presumably, whoever named this formula wrote it as v = v+ V.) For
the special case that the axes of $ and 8’ are parallel and V is in the x direction (our
“standard” configuration), this becomes ’

F 4 /
vx_vx—V, v, =

i and v, =, (15.23)

Our task now is to find the corresponding relativistic result.
Consider a particle moving with positipn r(f) or r’(t'), as seen in S or &'. The
definition of the velocity v is the derivative -

dr
= — 15.24
v dt ( )

where dr =1, — 1, is the infinitesimal displacement between the positions at times 1,

andt, = t, + dt. Now, we can write down the Lorentz transformation for (x5, y,, 23, 1)
and (x,, y;, 2}, #}), and taking differences, we find

dx' = y(dx — Vdr), dy =dy, d=dz, dif'=y(dr—Vdx/c}). (1525)

(Notice that dr and dt satisfy exactly the same transformation equations as r and 7.
This is because the Lorentz transformation turned out to be linear.) Using the definition
(15.24), we can write down the components of ¥/, and substituting (15.25) we find
for v/

X

¥

e dx’ _ y(dx —Vds)
* 4 y(dt—Vdx/c?)





