Teacher: Crystal Bray

November 14, 2010

Forces

Newton's Third Law: For every action there is an and reaction!

Newton's Second Law: relates an objects mass and acceleration and applied force by this equation.

$$
\begin{aligned}
\text { Force } & =\text { mass } \times \text { acceleration } \\
F & =m a
\end{aligned}
$$

Are you pulling or pushing your partner?
Is your partner pulling or pushing you?

Gravity

$$
\begin{aligned}
& \text { Force due to gravity }=\frac{\text { Gravitational constant } \times \text { Mass } \times \text { mass }}{\left(\text { distance between Mass and mass) }{ }^{2}\right.} \\
& \qquad F=\frac{G M m}{r^{2}} \\
& \text { define: } g_{\text {Earth }}=\frac{G M_{\text {Earth }}}{R_{\text {Earth }}^{2}} \\
& \text { What is } g_{\text {Earth }} ? \quad g_{\text {Earth }}= \\
& F=m \times g_{\text {Earth }}
\end{aligned}
$$

Spin

$$
\begin{aligned}
\text { Potential Energy } & =\frac{1}{2}(\text { moment of inertia }) \times(\text { angular velocity })^{2} \\
T & =\frac{1}{2} I \omega^{2} \\
\text { Angular Momentum } & =(\text { moment of inertia }) \times(\text { angular velocity }) \\
L & =I \omega
\end{aligned}
$$

Moment of Inertia of upright professor with arms tucked in $=30,000,000 \frac{l b}{f t^{2}}$
Moment of Inertia of upright professor with arms sticking out of side $=110,000,000 \frac{l b}{f t^{2}}$

When does the professor spin faster with his arms out or his arms tucked in given the same amount of energy?

Sound

$$
\begin{aligned}
\text { frequency you hear } & =\left(1-\frac{\text { velocity of ambulance }- \text { velocity of you }}{\text { velocity of sound }}\right) \times(\text { Original ambulance frequency }) \\
f & =\left(1-\frac{v_{a}-v_{y}}{v_{s}}\right) f_{0} \\
f_{0} & =330 H z=330 \frac{1}{\text { second }}
\end{aligned}
$$

What's the speed of sound? $v_{s}=\quad$?
Is the frequency, pitch, higher or lower when the ambulance comes toward you?
Is the frequency, pitch, higher or lower when the ambulance goes away you?

