
A64 Base Instruction Descriptions
C6.1 About the A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1639
ID032224 Non-Confidential

C6.1 About the A64 base instructions

Alphabetical list of A64 base instructions gives full descriptions of the A64 instructions that are in the following
instruction groups:

• Branch, Exception generation, and System instructions.

• Loads and stores associated with the general-purpose registers.

• Data processing (immediate).

• Data processing (register).

A64 instruction set encoding provides an overview of the instruction encodings as well as of the instruction classes
within their functional groups.

The rest of this section is general description of the base instructions. It contains the following subsections:

• Register size.

• Use of the PC.

• Use of the stack pointer.

• Condition flags and related instructions.

C6.1.1 Register size

Most data processing, comparison, and conversion instructions that use the general-purpose registers as the source
or destination operand have two instruction variants that operate on either a 32-bit or a 64-bit value.

Where a 32-bit instruction form is selected, the following holds:

• The upper 32 bits of the source registers are ignored.

• The upper 32 bits of the destination register are set to zero.

• Right shifts and right rotates inject at bit[31], not at bit[63].

• The Condition flags, where set by the instruction, are computed from the lower 32 bits.

This distinction applies even when the results of a 32-bit instruction form are indistinguishable from the lower 32
bits computed by the equivalent 64-bit instruction form. For example, a 32-bit bitwise ORR could be performed using
a 64-bit ORR and simply ignoring the top 32 bits of the result. However, the A64 instruction set includes separate
32-bit and 64-bit forms of the ORR instruction.

As well as distinct sign-extend or zero-extend instructions, the A64 instruction set also provides the ability to extend
and shift the final source register of an ADD, SUB, ADDS, or SUBS instruction and the index register of a load/store
instruction. This enables array index calculations involving a 64-bit array pointer and a 32-bit array index to be
implemented efficiently.

The assembly language notation enables the distinct identification of registers holding 32-bit values and registers
holding 64-bit values. See Register names and Register indexed addressing.

C6.1.2 Use of the PC

A64 instructions have limited access to the PC. The only instructions that can read the PC are those that generate a
PC relative address:

• ADR and ADRP.

• The Load register (literal) instruction class.

• Direct branches that use an immediate offset.

• The unconditional branch with link instructions, BL and BLR, that use the PC to create the return link
address.

Only explicit control flow instructions can modify the PC:

• Conditional and unconditional branch and return instructions.

• Exception generation and exception return instructions.

For more details of instructions that can modify the PC, see Branches, Exception generating, and System
instructions.

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1640
ID032224 Non-Confidential

C6.1.3 Use of the stack pointer

A64 instructions can use the stack pointer only in a limited number of cases:

• Load/store instructions use the current stack pointer as the base address:

— When stack alignment checking is enabled by system software and the base register is SP, the current
stack pointer must be initially quadword aligned, That is, it must be aligned to 16 bytes. Misalignment
generates an SP alignment fault. See SP alignment checking for more information.

• Add and subtract data processing instructions in their immediate and extended register forms, use the current
stack pointer as a source register or the destination register or both.

• Logical data processing instructions in their immediate form use the current stack pointer as the destination
register.

C6.1.4 Condition flags and related instructions

The A64 base instructions that use the Condition flags as an input are:

• Conditional branch. The conditional branch instruction is B.cond.

• Add or subtract with carry. These instruction types include instructions to perform multi-precision arithmetic
and calculate checksums. The add or subtract with carry instructions are ADC, ADCS, SBC, and SBCS, or an
architectural alias for these instructions.

• Conditional select with increment, negate, or invert. This instruction type conditionally selects between one
source register and a second, incremented, negated, inverted, or unmodified source register. The conditional
select with increment, negate, or invert instructions are CSINC, CSINV, and CSNEG.

These instructions also implement:

— Conditional select or move. The Condition flags select one of two source registers as the destination
register. Short conditional sequences can be replaced by unconditional instructions followed by a
conditional select, CSEL.

— Conditional set. Conditionally selects between 0 and 1, or 0 and -1. This can be used to convert the
Condition flags to a Boolean value or mask in a general-purpose register, for example. These
instructions include CSET and CSETM.

• Conditional compare. This instruction type sets the Condition flags to the result of a comparison if the
original condition is true, otherwise it sets the Condition flags to an immediate value. It permits the flattening
of nested conditional expressions without using conditional branches or performing Boolean arithmetic
within the general-purpose registers. The conditional compare instructions are CCMP and CCMN.

The A64 base instructions that update the Condition flags as an output are:

• Flag-setting data processing instructions, such as ADCS, ADDS, ANDS, BICS, RMIF, SBCS, SETF8, SETF16, and SUBS,
and the aliases CMN, CMP, and TST.

• Conditional compare instructions such as CCMN, CCMP.

• The random number generation instructions MRS RNDR and MRS RNDRRS, see Effect of random number generation
instructions on Condition flags.

The A64 base instructions that manipulate the Condition flags are:

• The flag manipulation instruction CFINV, which inverts the value of the Carry flag.

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1641
ID032224 Non-Confidential

• If FEAT_FlagM2 is implemented, the base instructions AXFLAG and XAFLAG. These instructions convert
between the Arm floating point comparison PSTATE condition flag format and an alternative format shown
in Table C6-1.

The flags can be directly accessed for a read/write using the NZCV, Condition Flags.

The A64 base instructions also include conditional branch instructions that do not use the Condition flags as an
input:

• Compare and branch if a register is zero or nonzero, CBZ and CBNZ.

• Test a single bit in a register and branch if the bit is zero or nonzero, TBZ and TBNZ.

Effect of random number generation instructions on Condition flags

If FEAT_RNG is implemented, then:

• When a valid random number is returned, the PSTATE.NZCV flags are set to 0b0000.

• If the random number hardware is not capable of returning a random number in a reasonable period of time,
the PSTATE.NZCV flags are set to 0b0100, and the random number generation instructions return the value 0.

Note

The definition of “reasonable period of time” is IMPLEMENTATION DEFINED. The expectation is that software might
use this as an opportunity to reschedule or run a different routine, perhaps after a small number of retries have failed
to return a valid value.

Table C6-1 Relationship between ARM format and alternative format PSTATE condition flags

ARM format Alternative format

Result N Z C V N Z C V

Greater than 0 0 1 0 0 0 1 0

Less than 1 0 0 0 0 0 0 0

Equal 0 1 1 0 0 1 1 0

Unordered 0 0 1 1 0 1 0 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1642
ID032224 Non-Confidential

C6.2 Alphabetical list of A64 base instructions

This section lists every instruction in the base category of the A64 instruction set. For details of the format used, see
Understanding the A64 instruction descriptions.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1643
ID032224 Non-Confidential

C6.2.1 ABS

Absolute value computes the absolute value of the signed integer value in the source register, and writes the result
to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

ABS <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

ABS <Xd>, <Xn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Abs(SInt(operand1));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1644
ID032224 Non-Confidential

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1645
ID032224 Non-Confidential

C6.2.2 ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

ADC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];

 (result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1646
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1647
ID032224 Non-Confidential

C6.2.3 ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the
destination register. It updates the condition flags based on the result.

32-bit variant

Applies when sf == 0.

ADCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

sf 0 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1648
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1649
ID032224 Non-Confidential

C6.2.4 ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left
shift amount, and writes the result to the destination register. The argument that is extended from the <Rm> register
can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when sf == 0.

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 0 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1650
ID032224 Non-Confidential

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1651
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1652
ID032224 Non-Confidential

C6.2.5 ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the
destination register.

This instruction is used by the alias MOV (to/from SP). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

Alias is preferred when

MOV (to/from SP) sh == '0' && imm12 == '000000000000' && (Rd == '11111' || Rn == '11111')

sf 0 0 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1653
ID032224 Non-Confidential

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];

 (result, -) = AddWithCarry(operand1, imm, '0');

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1654
ID032224 Non-Confidential

C6.2.6 ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

32-bit variant

Applies when sf == 0.

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 0 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1655
ID032224 Non-Confidential

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1656
ID032224 Non-Confidential

C6.2.7 ADDG

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register, modifies the
Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags
specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

Integer

(FEAT_MTE)

Encoding

ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
 bits(16) exclude = GCR_EL1.Exclude;
 bits(64) result;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
 else
 rtag = '0000';

 (result, -) = AddWithCarry(operand1, offset, '0');
 result = AArch64.AddressWithAllocationTag(result, rtag);

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

1 0 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0

op3

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1657
ID032224 Non-Confidential

C6.2.8 ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

Alias is preferred when

CMN (extended register) Rd == '11111'

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1658
ID032224 Non-Confidential

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1659
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1660
ID032224 Non-Confidential

C6.2.9 ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Alias is preferred when

CMN (immediate) Rd == '11111'

sf 0 1 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1661
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, imm, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1662
ID032224 Non-Confidential

C6.2.10 ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the
result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

CMN (shifted register) Rd == '11111'

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1663
ID032224 Non-Confidential

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1664
ID032224 Non-Confidential

C6.2.11 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

Encoding

ADR <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo, 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction,
in the range +/-1MB, is encoded in "immhi:immlo".

Operation

 X[d, 64] = PC64 + imm;

0 immlo 1 0 0 0 0 immhi Rd

31 30 29 28 27 26 25 24 23 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1665
ID032224 Non-Confidential

C6.2.12 ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to
form a PC-relative address, with the bottom 12 bits masked out, and writes the result to the destination register.

Encoding

ADRP <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo:Zeros(12), 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of
this instruction, in the range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

 bits(64) base = PC64<63:12>:Zeros(12);
 X[d, 64] = base + imm;

1 immlo 1 0 0 0 0 immhi Rd

31 30 29 28 27 26 25 24 23 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1666
ID032224 Non-Confidential

C6.2.13 AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

32-bit variant

Applies when sf == 0 && N == 0.

AND <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

AND <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 AND imm;
 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

sf 0 0 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1667
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1668
ID032224 Non-Confidential

C6.2.14 AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value,
and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1669
ID032224 Non-Confidential

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 AND operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1670
ID032224 Non-Confidential

C6.2.15 ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and
writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && N == 0.

ANDS <Wd>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

ANDS <Xd>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias is preferred when

TST (immediate) Rd == '11111'

sf 1 1 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1671
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 AND imm;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1672
ID032224 Non-Confidential

C6.2.16 ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

TST (shifted register) Rd == '11111'

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1673
ID032224 Non-Confidential

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 AND operand2;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1674
ID032224 Non-Confidential

C6.2.17 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The remainder obtained by dividing the second source
register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the ASRV instruction. This means that:

• The encodings in this description are named to match the encodings of ASRV.

• The description of ASRV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

ASR <Wd>, <Wn>, <Wm>

 is equivalent to

ASRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

ASR <Xd>, <Xn>, <Xm>

 is equivalent to

ASRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1675
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1676
ID032224 Non-Confidential

C6.2.18 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of the sign bit in the upper bits and zeros in the lower bits, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 011111.

ASR <Wd>, <Wn>, #<shift>

 is equivalent to

SBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1 && imms == 111111.

ASR <Xd>, <Xn>, #<shift>

 is equivalent to

SBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1677
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1678
ID032224 Non-Confidential

C6.2.19 ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register
by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ASR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

ASRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ASRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1679
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1680
ID032224 Non-Confidential

C6.2.20 AT

Address Translate. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

AT <at_op>, <Xt>

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_AT.

Assembler symbols

<at_op> Is an AT instruction name, as listed for the AT system instruction group, encoded in the
"op1:CRm<0>:op2" field. It can have the following values:

S1E1R when op1 = 000, CRm<0> = 0, op2 = 000

S1E1W when op1 = 000, CRm<0> = 0, op2 = 001

S1E0R when op1 = 000, CRm<0> = 0, op2 = 010

S1E0W when op1 = 000, CRm<0> = 0, op2 = 011

S1E2R when op1 = 100, CRm<0> = 0, op2 = 000

S1E2W when op1 = 100, CRm<0> = 0, op2 = 001

S12E1R when op1 = 100, CRm<0> = 0, op2 = 100

S12E1W when op1 = 100, CRm<0> = 0, op2 = 101

S12E0R when op1 = 100, CRm<0> = 0, op2 = 110

S12E0W when op1 = 100, CRm<0> = 0, op2 = 111

S1E3R when op1 = 110, CRm<0> = 0, op2 = 000

S1E3W when op1 = 110, CRm<0> = 0, op2 = 001

When FEAT_PAN2 is implemented, the following values are also valid:

S1E1RP when op1 = 000, CRm<0> = 1, op2 = 000

S1E1WP when op1 = 000, CRm<0> = 1, op2 = 001

When FEAT_ATS1A is implemented, the following values are also valid:

S1E1A when op1 = 000, CRm<0> = 1, op2 = 010

S1E2A when op1 = 100, CRm<0> = 1, op2 = 010

S1E3A when op1 = 110, CRm<0> = 1, op2 = 010

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 1 0 0 x op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn CRm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1681
ID032224 Non-Confidential

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1682
ID032224 Non-Confidential

C6.2.21 AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP>, for AUTDA.

• The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

Integer

(FEAT_PAuth)

AUTDA variant

Applies when Z == 0.

AUTDA <Xd>, <Xn|SP>

AUTDZA variant

Applies when Z == 1 && Rn == 11111.

AUTDZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTDA
 if n == 31 then source_is_sp = TRUE;
 else // AUTDZA
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthDA(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthDA(X[d, 64], X[n, 64], FALSE);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1683
ID032224 Non-Confidential

C6.2.22 AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.

• The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

Integer

(FEAT_PAuth)

AUTDB variant

Applies when Z == 0.

AUTDB <Xd>, <Xn|SP>

AUTDZB variant

Applies when Z == 1 && Rn == 11111.

AUTDZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTDB
 if n == 31 then source_is_sp = TRUE;
 else // AUTDZB
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthDB(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthDB(X[d, 64], X[n, 64], FALSE);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1684
ID032224 Non-Confidential

C6.2.23 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier
and key A.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.

• In X17, for AUTIA1716.

• In X30, for AUTIASP and AUTIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.

• The value zero, for AUTIZA and AUTIAZ.

• In X16, for AUTIA1716.

• In SP, for AUTIASP.

Integer

(FEAT_PAuth)

AUTIA variant

Applies when Z == 0.

AUTIA <Xd>, <Xn|SP>

AUTIZA variant

Applies when Z == 1 && Rn == 11111.

AUTIZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTIA
 if n == 31 then source_is_sp = TRUE;
 else // AUTIZA
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1685
ID032224 Non-Confidential

AUTIA1716 variant

Applies when CRm == 0001 && op2 == 100.

AUTIA1716

AUTIASP variant

Applies when CRm == 0011 && op2 == 101.

AUTIASP

AUTIAZ variant

Applies when CRm == 0011 && op2 == 100.

AUTIAZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 100' // AUTIAZ
 d = 30;
 n = 31;
 when '0011 101' // AUTIASP
 d = 30;
 source_is_sp = TRUE;
 when '0001 100' // AUTIA1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthIA(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthIA(X[d, 64], X[n, 64], FALSE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 0 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1686
ID032224 Non-Confidential

C6.2.24 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier
and key B.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.

• In X17, for AUTIB1716.

• In X30, for AUTIBSP and AUTIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.

• The value zero, for AUTIZB and AUTIBZ.

• In X16, for AUTIB1716.

• In SP, for AUTIBSP.

Integer

(FEAT_PAuth)

AUTIB variant

Applies when Z == 0.

AUTIB <Xd>, <Xn|SP>

AUTIZB variant

Applies when Z == 1 && Rn == 11111.

AUTIZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTIB
 if n == 31 then source_is_sp = TRUE;
 else // AUTIZB
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1687
ID032224 Non-Confidential

AUTIB1716 variant

Applies when CRm == 0001 && op2 == 110.

AUTIB1716

AUTIBSP variant

Applies when CRm == 0011 && op2 == 111.

AUTIBSP

AUTIBZ variant

Applies when CRm == 0011 && op2 == 110.

AUTIBZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 110' // AUTIBZ
 d = 30;
 n = 31;
 when '0011 111' // AUTIBSP
 d = 30;
 source_is_sp = TRUE;
 when '0001 110' // AUTIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthIB(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthIB(X[d, 64], X[n, 64], FALSE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 1 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1688
ID032224 Non-Confidential

C6.2.25 AXFLAG

Convert floating-point condition flags from Arm to external format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar compare instruction
to an alternative representation required by some software.

System

(FEAT_FlagM2)

Encoding

AXFLAG

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM2) then UNDEFINED;

Operation

 bit z = PSTATE.Z OR PSTATE.V;
 bit c = PSTATE.C AND NOT(PSTATE.V);

 PSTATE.N = '0';
 PSTATE.Z = z;
 PSTATE.C = c;
 PSTATE.V = '0';

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1689
ID032224 Non-Confidential

C6.2.26 B

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call
or return.

Encoding

B <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 BranchTo(PC64 + offset, BranchType_DIR, FALSE);

0 0 0 1 0 1 imm26

31 30 29 28 27 26 25 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1690
ID032224 Non-Confidential

C6.2.27 B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

Encoding

B.<cond> <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 if ConditionHolds(cond) then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

0 1 0 1 0 1 0 0 imm19 0 cond

31 30 29 28 27 26 25 24 23 5 4 3 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1691
ID032224 Non-Confidential

C6.2.28 BC.cond

Branch Consistent conditionally to a label at a PC-relative offset, with a hint that this branch will behave very
consistently and is very unlikely to change direction.

19-bit signed PC-relative branch offset

(FEAT_HBC)

Encoding

BC.<cond> <label>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_HBC) then UNDEFINED;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 if ConditionHolds(cond) then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

0 1 0 1 0 1 0 0 imm19 1 cond

31 30 29 28 27 26 25 24 23 5 4 3 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1692
ID032224 Non-Confidential

C6.2.29 BFC

Bitfield Clear sets a bitfield of <width> bits at bit position <lsb> of the destination register to zero, leaving the other
destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Leaving other bits unchanged

(FEAT_ASMv8p2)

32-bit variant

Applies when sf == 0 && N == 0.

BFC <Wd>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFC <Xd>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1693
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1694
ID032224 Non-Confidential

C6.2.30 BFI

Bitfield Insert copies a bitfield of <width> bits from the least significant bits of the source register to bit position
<lsb> of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFI <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFI <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms !=11111 Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1695
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1696
ID032224 Non-Confidential

C6.2.31 BFM

Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the other bits of the destination register remain unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL. See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && N == 0.

BFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

BFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 integer r;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 r = UInt(immr);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE, datasize);

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1697
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) dst = X[d, datasize];
 bits(datasize) src = X[n, datasize];

 // perform bitfield move on low bits
 bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, r) AND wmask);

 // combine extension bits and result bits
 X[d, datasize] = (dst AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias is preferred when

BFC Rn == '11111' && UInt(imms) < UInt(immr)

BFI Rn != '11111' && UInt(imms) < UInt(immr)

BFXIL
UInt(imms) >= UInt(immr)

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1698
ID032224 Non-Confidential

C6.2.32 BFXIL

Bitfield Extract and Insert Low copies a bitfield of <width> bits starting from bit position <lsb> in the source register
to the least significant bits of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFXIL <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFXIL <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1699
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1700
ID032224 Non-Confidential

C6.2.33 BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1701
ID032224 Non-Confidential

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1702
ID032224 Non-Confidential

C6.2.34 BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement
of an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags
based on the result.

32-bit variant

Applies when sf == 0.

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1703
ID032224 Non-Confidential

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1704
ID032224 Non-Confidential

C6.2.35 BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a
subroutine call.

Encoding

BL <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 if IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL) then
 AddGCSRecord(PC64 + 4);
 X[30, 64] = PC64 + 4;

 BranchTo(PC64 + offset, BranchType_DIRCALL, FALSE);

1 0 0 1 0 1 imm26

31 30 29 28 27 26 25 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1705
ID032224 Non-Confidential

C6.2.36 BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

Encoding

BLR <Xn>

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

 bits(64) target = X[n, 64];

 if IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL) then
 AddGCSRecord(PC64 + 4);
 X[30, 64] = PC64 + 4;

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '10';
 BranchTo(target, BranchType_INDCALL, FALSE);

1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1706
ID032224 Non-Confidential

C6.2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the
general-purpose register that is specified by <Xn>, using a modifier and the specified key, and calls a subroutine at
the authenticated address, setting register X30 to PC+4.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP>, for BLRAA and BLRAB.

• The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ. Key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to the general-purpose register.

Integer

(FEAT_PAuth)

Key A, zero modifier variant

Applies when Z == 0 && M == 0 && Rm == 11111.

BLRAAZ <Xn>

Key A, register modifier variant

Applies when Z == 1 && M == 0.

BLRAA <Xn>, <Xm|SP>

Key B, zero modifier variant

Applies when Z == 0 && M == 1 && Rm == 11111.

BLRABZ <Xn>

Key B, register modifier variant

Applies when Z == 1 && M == 1.

BLRAB <Xn>, <Xm|SP>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean use_key_a = (M == '0');
 boolean source_is_sp = ((Z == '1') && (m == 31));

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' && m != 31 then
 UNDEFINED;

1 1 0 1 0 1 1 Z 0 0 1 1 1 1 1 1 0 0 0 0 1 M Rn Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op A

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1707
ID032224 Non-Confidential

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier,
encoded in the "Rm" field.

Operation

 bits(64) target = X[n, 64];

 bits(64) modifier = if source_is_sp then SP[] else X[m, 64];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 if IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL) then
 AddGCSRecord(PC64 + 4);
 X[30, 64] = PC64 + 4;

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '10';
 BranchTo(target, BranchType_INDCALL, FALSE);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1708
ID032224 Non-Confidential

C6.2.38 BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

Encoding

BR <Xn>

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

 bits(64) target = X[n, 64];

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 if InGuardedPage then
 if n == 16 || n == 17 then
 BTypeNext = '01';
 else
 BTypeNext = '11';
 else
 BTypeNext = '01';
 BranchTo(target, BranchType_INDIR, FALSE);

1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1709
ID032224 Non-Confidential

C6.2.39 BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose
register that is specified by <Xn>, using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP>, for BRAA and BRAB.

• The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ. Key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to the general-purpose register.

Integer

(FEAT_PAuth)

Key A, zero modifier variant

Applies when Z == 0 && M == 0 && Rm == 11111.

BRAAZ <Xn>

Key A, register modifier variant

Applies when Z == 1 && M == 0.

BRAA <Xn>, <Xm|SP>

Key B, zero modifier variant

Applies when Z == 0 && M == 1 && Rm == 11111.

BRABZ <Xn>

Key B, register modifier variant

Applies when Z == 1 && M == 1.

BRAB <Xn>, <Xm|SP>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean use_key_a = (M == '0');
 boolean source_is_sp = ((Z == '1') && (m == 31));

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' && m != 31 then
 UNDEFINED;

1 1 0 1 0 1 1 Z 0 0 0 1 1 1 1 1 0 0 0 0 1 M Rn Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op A

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1710
ID032224 Non-Confidential

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier,
encoded in the "Rm" field.

Operation

 bits(64) target = X[n, 64];

 bits(64) modifier = if source_is_sp then SP[] else X[m, 64];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 if InGuardedPage then
 if n == 16 || n == 17 then
 BTypeNext = '01';
 else
 BTypeNext = '11';
 else
 BTypeNext = '01';
 BranchTo(target, BranchType_INDIR, FALSE);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1711
ID032224 Non-Confidential

C6.2.40 BRB

Branch Record Buffer. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_BRBE)

Encoding

BRB <brb_op>{, <Xt>}

 is equivalent to

SYS #1, C7, C2, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp('001','0111','0010',op2) == Sys_BRB.

Assembler symbols

<brb_op> Is a BRB instruction name, as listed for the BRB system instruction group, encoded in the "op2"
field. It can have the following values:

IALL when op2 = 100

INJ when op2 = 101

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1712
ID032224 Non-Confidential

C6.2.41 BRK

Breakpoint instruction. A BRK instruction generates a Breakpoint Instruction exception. The PE records the
exception in ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in
ESR_ELx.ISS.

Within a guarded memory region, while PSTATE.BTYPE != 0b00, a BRK instruction will not generate a Branch
Target Exception and will generate a Breakpoint Instruction exception as normal. For more information, see
PSTATE.BTYPE.

Encoding

BRK #<imm>

Decode for this encoding

 if IsFeatureImplemented(FEAT_BTI) then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.SoftwareBreakpoint(imm16);

1 1 0 1 0 1 0 0 0 0 1 imm16 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1713
ID032224 Non-Confidential

C6.2.42 BTI

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions that are not the
intended target of a branch.

Outside of a guarded memory region, a BTI instruction executes as a NOP. Within a guarded memory region, while
PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE will not generate
a Branch Target Exception and will allow execution of subsequent instructions within the memory region. For more
information, see PSTATE.BTYPE.

The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE that the BTI instruction
is compatible with.

System

(FEAT_BTI)

Encoding

BTI {<targets>}

Decode for this encoding

 SystemHintOp op;

 if CRm:op2 == '0100 xx0' then
 op = SystemHintOp_BTI;
 // Check branch target compatibility between BTI instruction and PSTATE.BTYPE
 SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
 else
 EndOfInstruction();

Assembler symbols

<targets> Is the type of indirection, encoded in the "op2<2:1>" field. It can have the following values:

(omitted) when op2<2:1> = 00

c when op2<2:1> = 01

j when op2<2:1> = 10

jc when op2<2:1> = 11

Operation

 case op of
 when SystemHintOp_YIELD
 Hint_Yield();

 when SystemHintOp_DGH
 Hint_DGH();

 when SystemHintOp_WFE
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFE(localtimeout, WFxType_WFE);

 when SystemHintOp_WFI
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFI(localtimeout, WFxType_WFI);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 x x 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1714
ID032224 Non-Confidential

 when SystemHintOp_SEV
 SendEvent();

 when SystemHintOp_SEVL
 SendEventLocal();

 when SystemHintOp_ESB
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

 when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();

 when SystemHintOp_TSB
 TraceSynchronizationBarrier();

 when SystemHintOp_GCSB
 GCSSynchronizationBarrier();

 when SystemHintOp_CHKFEAT
 X[16, 64] = AArch64.ChkFeat(X[16, 64]);

 when SystemHintOp_CSDB
 ConsumptionOfSpeculativeDataBarrier();

 when SystemHintOp_CLRBHB
 Hint_CLRBHB();

 when SystemHintOp_BTI
 SetBTypeNext('00');

 when SystemHintOp_NOP
 return; // do nothing

 otherwise
 Unreachable();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1715
ID032224 Non-Confidential

C6.2.43 CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is
written to memory. If the write is performed, the read and write occur atomically such that no other modification of
the memory location can take place between the read and write.

• CASA and CASAL load from memory with acquire semantics.

• CASL and CASAL store to memory with release semantics.

• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or
<Xs>, is restored to the value held in the register before the instruction was executed.

No offset

(FEAT_LSE)

32-bit CAS variant

Applies when size == 10 && L == 0 && o0 == 0.

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASA variant

Applies when size == 10 && L == 1 && o0 == 0.

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASAL variant

Applies when size == 10 && L == 1 && o0 == 1.

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASL variant

Applies when size == 10 && L == 0 && o0 == 1.

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit CAS variant

Applies when size == 11 && L == 0 && o0 == 0.

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASA variant

Applies when size == 11 && L == 1 && o0 == 0.

1 x 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1716
ID032224 Non-Confidential

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASAL variant

Applies when size == 11 && L == 1 && o0 == 1.

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASL variant

Applies when size == 11 && L == 0 && o0 == 1.

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = L == '1';
 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) comparevalue;
 bits(datasize) newvalue;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = X[s, datasize];
 newvalue = X[t, datasize];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1717
ID032224 Non-Confidential

 X[s, regsize] = ZeroExtend(data, regsize);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1718
ID032224 Non-Confidential

C6.2.44 CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a
first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed,
the read and write occur atomically such that no other modification of the memory location can take place between
the read and write.

• CASAB and CASALB load from memory with acquire semantics.

• CASLB and CASALB store to memory with release semantics.

• CASB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset

(FEAT_LSE)

CASAB variant

Applies when L == 1 && o0 == 0.

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALB variant

Applies when L == 1 && o0 == 1.

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASB variant

Applies when L == 0 && o0 == 0.

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLB variant

Applies when L == 0 && o0 == 1.

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 boolean acquire = L == '1';

0 0 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1719
ID032224 Non-Confidential

 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) comparevalue;
 bits(8) newvalue;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = X[s, 8];
 newvalue = X[t, 8];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

 X[s, 32] = ZeroExtend(data, 32);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1720
ID032224 Non-Confidential

C6.2.45 CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take
place between the read and write.

• CASAH and CASALH load from memory with acquire semantics.

• CASLH and CASALH store to memory with release semantics.

• CASH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset

(FEAT_LSE)

CASAH variant

Applies when L == 1 && o0 == 0.

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALH variant

Applies when L == 1 && o0 == 1.

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASH variant

Applies when L == 0 && o0 == 0.

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLH variant

Applies when L == 0 && o0 == 1.

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 boolean acquire = L == '1';

0 1 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1721
ID032224 Non-Confidential

 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) comparevalue;
 bits(16) newvalue;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = X[s, 16];
 newvalue = X[t, 16];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

 X[s, 32] = ZeroExtend(data, 32);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1722
ID032224 Non-Confidential

C6.2.46 CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords
from memory, and compares them against the values held in the first pair of registers. If the comparison is equal,
the values in the second pair of registers are written to memory. If the writes are performed, the reads and writes
occur atomically such that no other modification of the memory location can take place between the reads and
writes.

• CASPA and CASPAL load from memory with acquire semantics.

• CASPL and CASPAL store to memory with release semantics.

• CASP has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws> and
<W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction was executed.

No offset

(FEAT_LSE)

32-bit CASP variant

Applies when sz == 0 && L == 0 && o0 == 0.

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPA variant

Applies when sz == 0 && L == 1 && o0 == 0.

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPAL variant

Applies when sz == 0 && L == 1 && o0 == 1.

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPL variant

Applies when sz == 0 && L == 0 && o0 == 1.

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit CASP variant

Applies when sz == 1 && L == 0 && o0 == 0.

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPA variant

Applies when sz == 1 && L == 1 && o0 == 0.

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1723
ID032224 Non-Confidential

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPAL variant

Applies when sz == 1 && L == 1 && o0 == 1.

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPL variant

Applies when sz == 1 && L == 0 && o0 == 1.

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 constant integer datasize = 32 << UInt(sz);
 boolean acquire = L == '1';
 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Ws> must be an even-numbered register.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Wt> must be an even-numbered register.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(2*datasize) comparevalue;
 bits(2*datasize) newvalue;
 bits(2*datasize) data;

 bits(datasize) s1 = X[s, datasize];
 bits(datasize) s2 = X[s+1, datasize];
 bits(datasize) t1 = X[t, datasize];
 bits(datasize) t2 = X[t+1, datasize];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1724
ID032224 Non-Confidential

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = if BigEndian(accdesc.acctype) then s1:s2 else s2:s1;
 newvalue = if BigEndian(accdesc.acctype) then t1:t2 else t2:t1;
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

 if BigEndian(accdesc.acctype) then
 X[s, datasize] = data<2*datasize-1:datasize>;
 X[s+1, datasize] = data<datasize-1:0>;
 else
 X[s, datasize] = data<datasize-1:0>;
 X[s+1, datasize] = data<2*datasize-1:datasize>;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1725
ID032224 Non-Confidential

C6.2.47 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

32-bit variant

Applies when sf == 0.

CBNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBNZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 constant integer datasize = 32 << UInt(sf);
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t, datasize];
 if IsZero(operand1) == FALSE then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

sf 0 1 1 0 1 0 1 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1726
ID032224 Non-Confidential

C6.2.48 CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

32-bit variant

Applies when sf == 0.

CBZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 constant integer datasize = 32 << UInt(sf);
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t, datasize];
 if IsZero(operand1) == TRUE then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

sf 0 1 1 0 1 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1727
ID032224 Non-Confidential

C6.2.49 CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of
a register value and a negated immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMN <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;
 bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 (-, flags) = AddWithCarry(operand1, imm, '0');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1728
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1729
ID032224 Non-Confidential

C6.2.50 CCMN (register)

Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a
register value and the inverse of another register value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 (-, flags) = AddWithCarry(operand1, operand2, '0');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1730
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1731
ID032224 Non-Confidential

C6.2.51 CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register
value and an immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMP <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;
 bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2;
 operand2 = NOT(imm);
 (-, flags) = AddWithCarry(operand1, operand2, '1');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1732
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1733
ID032224 Non-Confidential

C6.2.52 CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers
if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 operand2 = NOT(operand2);
 (-, flags) = AddWithCarry(operand1, operand2, '1');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1734
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1735
ID032224 Non-Confidential

C6.2.53 CFINV

Invert Carry Flag. This instruction inverts the value of the PSTATE.C flag.

System

(FEAT_FlagM)

Encoding

CFINV

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM) then UNDEFINED;

Operation

 PSTATE.C = NOT(PSTATE.C);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1736
ID032224 Non-Confidential

C6.2.54 CFP

Control Flow Prediction Restriction by Context prevents control flow predictions that predict execution addresses
based on information gathered from earlier execution within a particular execution context. Control flow predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.

For more information, see CFP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES)

Encoding

CFP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #4, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1737
ID032224 Non-Confidential

C6.2.55 CHKFEAT

Check feature status. This instruction indicates the status of features.

If FEAT_CHK is not implemented, this instruction executes as a NOP.

System

(FEAT_CHK)

Encoding

CHKFEAT X16

Decode for this encoding

 if !IsFeatureImplemented(FEAT_CHK) then EndOfInstruction();

Operation

 X[16, 64] = AArch64.ChkFeat(X[16, 64]);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1738
ID032224 Non-Confidential

C6.2.56 CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the
condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINC instruction. This means that:

• The encodings in this description are named to match the encodings of CSINC.

• The description of CSINC gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CINC <Wd>, <Wn>, <cond>

 is equivalent to

CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CINC <Xd>, <Xn>, <cond>

 is equivalent to

CSINC <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 0 0 !=11111 !=111x 0 1 !=11111 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1739
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1740
ID032224 Non-Confidential

C6.2.57 CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the
condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.

• The description of CSINV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CINV <Wd>, <Wn>, <cond>

 is equivalent to

CSINV <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CINV <Xd>, <Xn>, <cond>

 is equivalent to

CSINV <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

sf 1 0 1 1 0 1 0 1 0 0 !=11111 !=111x 0 0 !=11111 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1741
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1742
ID032224 Non-Confidential

C6.2.58 CLRBHB

Clear Branch History clears the branch history for the current context to the extent that branch history information
created before the CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control
the execution of any indirect branches in code in the current context that appear in program order after the
instruction.

System

(FEAT_CLRBHB)

Encoding

CLRBHB

Decode for this encoding

 if !IsFeatureImplemented(FEAT_CLRBHB) then
 EndOfInstruction();

Operation

 Hint_CLRBHB();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1743
ID032224 Non-Confidential

C6.2.59 CLREX

Clear Exclusive clears the local monitor of the executing PE.

Encoding

CLREX {#<imm>}

Decode for this encoding

 // CRm field is ignored

Assembler symbols

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

 ClearExclusiveLocal(ProcessorID());

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1744
ID032224 Non-Confidential

C6.2.60 CLS

Count Leading Sign bits counts the number of leading bits of the source register that have the same value as the
most significant bit of the register, and writes the result to the destination register. This count does not include the
most significant bit of the source register.

32-bit variant

Applies when sf == 0.

CLS <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CLS <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 integer result;
 bits(datasize) operand1 = X[n, datasize];

 result = CountLeadingSignBits(operand1);

 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1745
ID032224 Non-Confidential

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1746
ID032224 Non-Confidential

C6.2.61 CLZ

Count Leading Zeros counts the number of consecutive binary zero bits, starting from the most significant bit in the
source register, and places the count in the destination register.

32-bit variant

Applies when sf == 0.

CLZ <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CLZ <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 integer result;
 bits(datasize) operand1 = X[n, datasize];

 result = CountLeadingZeroBits(operand1);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1747
ID032224 Non-Confidential

C6.2.62 CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (extended register) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (extended register).

• The description of ADDS (extended register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

 is equivalent to

ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}

 is equivalent to

ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1748
ID032224 Non-Confidential

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1749
ID032224 Non-Confidential

C6.2.63 CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (immediate).

• The description of ADDS (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn|WSP>, #<imm>{, <shift>}

 is equivalent to

ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn|SP>, #<imm>{, <shift>}

 is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1750
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1751
ID032224 Non-Confidential

C6.2.64 CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (shifted register).

• The description of ADDS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1752
ID032224 Non-Confidential

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1753
ID032224 Non-Confidential

C6.2.65 CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (extended register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (extended register).

• The description of SUBS (extended register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

 is equivalent to

SUBS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}

 is equivalent to

SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1754
ID032224 Non-Confidential

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1755
ID032224 Non-Confidential

C6.2.66 CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition
flags based on the result, and discards the result.

This instruction is an alias of the SUBS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (immediate).

• The description of SUBS (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn|WSP>, #<imm>{, <shift>}

 is equivalent to

SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn|SP>, #<imm>{, <shift>}

 is equivalent to

SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.

sf 1 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1756
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1757
ID032224 Non-Confidential

C6.2.67 CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (shifted register).

• The description of SUBS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1758
ID032224 Non-Confidential

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1759
ID032224 Non-Confidential

C6.2.68 CMPP

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, updates the condition flags based on the result of the subtraction, and discards the result.

This instruction is an alias of the SUBPS instruction. This means that:

• The encodings in this description are named to match the encodings of SUBPS.

• The description of SUBPS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Integer

(FEAT_MTE)

Encoding

CMPP <Xn|SP>, <Xm|SP>

 is equivalent to

SUBPS XZR, <Xn|SP>, <Xm|SP>

and is always the preferred disassembly.

Assembler symbols

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

The description of SUBPS gives the operational pseudocode for this instruction.

1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Xd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1760
ID032224 Non-Confidential

C6.2.69 CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSNEG instruction. This means that:

• The encodings in this description are named to match the encodings of CSNEG.

• The description of CSNEG gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CNEG <Wd>, <Wn>, <cond>

 is equivalent to

CSNEG <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CNEG <Xd>, <Xn>, <cond>

 is equivalent to

CSNEG <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSNEG gives the operational pseudocode for this instruction.

sf 1 0 1 1 0 1 0 1 0 0 Rm !=111x 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op cond o2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1761
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1762
ID032224 Non-Confidential

C6.2.70 CNT

Count bits counts the number of binary one bits in the value of the source register, and writes the result to the
destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

CNT <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CNT <Xd>, <Xn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = BitCount(operand1);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1763
ID032224 Non-Confidential

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1764
ID032224 Non-Confidential

C6.2.71 COSP

Clear Other Speculative Prediction Restriction by Context prevents predictions, other than Cache prefetch, Control
flow, and Data Value predictions, that predict execution addresses based on information gathered from earlier
execution within a particular execution context. Predictions, other than Cache prefetch, Control flow, and Data
Value predictions, determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot exploitatively control any speculative access occurring after the
instruction is complete and synchronized.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES2)

Encoding

COSP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #6, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1765
ID032224 Non-Confidential

C6.2.72 CPP

Cache Prefetch Prediction Restriction by Context prevents cache allocation predictions that predict execution
addresses based on information gathered from earlier execution within a particular execution context. The actions
of code in the target execution context or contexts appearing in program order before the instruction cannot
exploitatively control cache prefetch predictions occurring after the instruction is complete and synchronized.

For more information, see CPP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES)

Encoding

CPP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #7, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1766
ID032224 Non-Confidential

C6.2.73 CPYFP, CPYFM, CPYFE

Memory Copy Forward-only. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYFP, then CPYFM, and
then CPYFE.

CPYFP performs some preconditioning of the arguments suitable for using the CPYFM instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory copy. CPYFM performs an IMPLEMENTATION DEFINED
amount of the memory copy. CPYFE performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFP, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFP, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1767
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFE [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFM [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFP [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1768
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1769
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1770
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1771
ID032224 Non-Confidential

C6.2.74 CPYFPN, CPYFMN, CPYFEN

Memory Copy Forward-only, reads and writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPN, then CPYFMN, and then CPYFEN.

CPYFPN performs some preconditioning of the arguments suitable for using the CPYFMN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1772
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1773
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1774
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1775
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1776
ID032224 Non-Confidential

C6.2.75 CPYFPRN, CPYFMRN, CPYFERN

Memory Copy Forward-only, reads non-temporal. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPRN,
then CPYFMRN, and then CPYFERN.

CPYFPRN performs some preconditioning of the arguments suitable for using the CPYFMRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFERN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1777
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1778
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1779
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1780
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1781
ID032224 Non-Confidential

C6.2.76 CPYFPRT, CPYFMRT, CPYFERT

Memory Copy Forward-only, reads unprivileged. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPRT,
then CPYFMRT, and then CPYFERT.

CPYFPRT performs some preconditioning of the arguments suitable for using the CPYFMRT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFERT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1782
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRT [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1783
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1784
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1785
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1786
ID032224 Non-Confidential

C6.2.77 CPYFPRTN, CPYFMRTN, CPYFERTN

Memory Copy Forward-only, reads unprivileged, reads and writes non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPRTN, then CPYFMRTN, and then CPYFERTN.

CPYFPRTN performs some preconditioning of the arguments suitable for using the CPYFMRTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFERTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1787
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRTN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1788
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1789
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1790
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1791
ID032224 Non-Confidential

C6.2.78 CPYFPRTRN, CPYFMRTRN, CPYFERTRN

Memory Copy Forward-only, reads unprivileged and non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPRTRN, then CPYFMRTRN, and then CPYFERTRN.

CPYFPRTRN performs some preconditioning of the arguments suitable for using the CPYFMRTRN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRTRN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFERTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRTRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRTRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1792
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERTRN option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRTRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1793
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1794
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1795
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1796
ID032224 Non-Confidential

C6.2.79 CPYFPRTWN, CPYFMRTWN, CPYFERTWN

Memory Copy Forward-only, reads unprivileged, writes non-temporal. These instructions perform a memory copy.
The prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPRTWN, then CPYFMRTWN, and then CPYFERTWN.

CPYFPRTWN performs some preconditioning of the arguments suitable for using the CPYFMRTWN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRTWN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFERTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRTWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRTWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1797
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRTWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1798
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1799
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1800
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1801
ID032224 Non-Confidential

C6.2.80 CPYFPT, CPYFMT, CPYFET

Memory Copy Forward-only, reads and writes unprivileged. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPT, then CPYFMT, and then CPYFET.

CPYFPT performs some preconditioning of the arguments suitable for using the CPYFMT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFET performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1802
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFET [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPT [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1803
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1804
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1805
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1806
ID032224 Non-Confidential

C6.2.81 CPYFPTN, CPYFMTN, CPYFETN

Memory Copy Forward-only, reads and writes unprivileged and non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPTN, then CPYFMTN, and then CPYFETN.

CPYFPTN performs some preconditioning of the arguments suitable for using the CPYFMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFETN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1807
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFETN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPTN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1808
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1809
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1810
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1811
ID032224 Non-Confidential

C6.2.82 CPYFPTRN, CPYFMTRN, CPYFETRN

Memory Copy Forward-only, reads and writes unprivileged, reads non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPTRN, then CPYFMTRN, and then CPYFETRN.

CPYFPTRN performs some preconditioning of the arguments suitable for using the CPYFMTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFETRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPTRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPTRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1812
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFETRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFETRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFETRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPTRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1813
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1814
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1815
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1816
ID032224 Non-Confidential

C6.2.83 CPYFPTWN, CPYFMTWN, CPYFETWN

Memory Copy Forward-only, reads and writes unprivileged, writes non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPTWN, then CPYFMTWN, and then CPYFETWN.

CPYFPTWN performs some preconditioning of the arguments suitable for using the CPYFMTWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMTWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFETWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPTWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPTWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1817
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFETWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFETWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFETWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPTWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1818
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1819
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1820
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1821
ID032224 Non-Confidential

C6.2.84 CPYFPWN, CPYFMWN, CPYFEWN

Memory Copy Forward-only, writes non-temporal. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPWN,
then CPYFMWN, and then CPYFEWN.

CPYFPWN performs some preconditioning of the arguments suitable for using the CPYFMWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1822
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1823
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1824
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1825
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1826
ID032224 Non-Confidential

C6.2.85 CPYFPWT, CPYFMWT, CPYFEWT

Memory Copy Forward-only, writes unprivileged. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPWT,
then CPYFMWT, and then CPYFEWT.

CPYFPWT performs some preconditioning of the arguments suitable for using the CPYFMWT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEWT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1827
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWT [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1828
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1829
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1830
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1831
ID032224 Non-Confidential

C6.2.86 CPYFPWTN, CPYFMWTN, CPYFEWTN

Memory Copy Forward-only, writes unprivileged, reads and writes non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPWTN, then CPYFMWTN, and then CPYFEWTN.

CPYFPWTN performs some preconditioning of the arguments suitable for using the CPYFMWTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEWTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1832
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWTN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1833
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1834
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1835
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1836
ID032224 Non-Confidential

C6.2.87 CPYFPWTRN, CPYFMWTRN, CPYFEWTRN

Memory Copy Forward-only, writes unprivileged, reads non-temporal. These instructions perform a memory copy.
The prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPWTRN, then CPYFMWTRN, and then CPYFEWTRN.

CPYFPWTRN performs some preconditioning of the arguments suitable for using the CPYFMWTRN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWTRN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFEWTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWTRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWTRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1837
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWTRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1838
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1839
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1840
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1841
ID032224 Non-Confidential

C6.2.88 CPYFPWTWN, CPYFMWTWN, CPYFEWTWN

Memory Copy Forward-only, writes unprivileged and non-temporal. These instructions perform a memory copy.
The prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPWTWN, then CPYFMWTWN, and then CPYFEWTWN.

CPYFPWTWN performs some preconditioning of the arguments suitable for using the CPYFMWTWN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWTWN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFEWTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWTWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWTWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1842
ID032224 Non-Confidential

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWTWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1843
ID032224 Non-Confidential

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1844
ID032224 Non-Confidential

 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1845
ID032224 Non-Confidential

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1846
ID032224 Non-Confidential

C6.2.89 CPYP, CPYM, CPYE

Memory Copy. These instructions perform a memory copy. The prologue, main, and epilogue instructions are
expected to be run in succession and to appear consecutively in memory: CPYP, then CPYM, and then CPYE.

CPYP performs some preconditioning of the arguments suitable for using the CPYM instruction, and performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYM performs an IMPLEMENTATION DEFINED amount of
the memory copy. CPYE performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYP, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYP, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYP, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1847
ID032224 Non-Confidential

For CPYM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is copied to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is made to.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1848
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from.

— Xd holds the highest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYE [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYM [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYP [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1849
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1850
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1851
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1852
ID032224 Non-Confidential

C6.2.90 CPYPN, CPYMN, CPYEN

Memory Copy, reads and writes non-temporal. These instructions perform a memory copy. The prologue, main, and
epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYPN, then
CPYMN, and then CPYEN.

CPYPN performs some preconditioning of the arguments suitable for using the CPYMN instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory copy. CPYMN performs an IMPLEMENTATION DEFINED
amount of the memory copy. CPYEN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1853
ID032224 Non-Confidential

For CPYMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1854
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1855
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1856
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1857
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1858
ID032224 Non-Confidential

C6.2.91 CPYPRN, CPYMRN, CPYERN

Memory Copy, reads non-temporal. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPRN, then CPYMRN,
and then CPYERN.

CPYPRN performs some preconditioning of the arguments suitable for using the CPYMRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1859
ID032224 Non-Confidential

For CPYMRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1860
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1861
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1862
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1863
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1864
ID032224 Non-Confidential

C6.2.92 CPYPRT, CPYMRT, CPYERT

Memory Copy, reads unprivileged. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPRT, then CPYMRT,
and then CPYERT.

CPYPRT performs some preconditioning of the arguments suitable for using the CPYMRT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRT, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRT, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRT, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1865
ID032224 Non-Confidential

For CPYMRT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1866
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRT [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1867
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1868
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1869
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1870
ID032224 Non-Confidential

C6.2.93 CPYPRTN, CPYMRTN, CPYERTN

Memory Copy, reads unprivileged, reads and writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPRTN, then CPYMRTN, and then CPYERTN.

CPYPRTN performs some preconditioning of the arguments suitable for using the CPYMRTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRTN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRTN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRTN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1871
ID032224 Non-Confidential

For CPYMRTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1872
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRTN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1873
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1874
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1875
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1876
ID032224 Non-Confidential

C6.2.94 CPYPRTRN, CPYMRTRN, CPYERTRN

Memory Copy, reads unprivileged and non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPRTRN, then CPYMRTRN, and then CPYERTRN.

CPYPRTRN performs some preconditioning of the arguments suitable for using the CPYMRTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRTRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRTRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRTRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1877
ID032224 Non-Confidential

For CPYMRTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1878
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRTRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1879
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1880
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1881
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1882
ID032224 Non-Confidential

C6.2.95 CPYPRTWN, CPYMRTWN, CPYERTWN

Memory Copy, reads unprivileged, writes non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPRTWN, then CPYMRTWN, and then CPYERTWN.

CPYPRTWN performs some preconditioning of the arguments suitable for using the CPYMRTWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRTWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRTWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRTWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRTWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1883
ID032224 Non-Confidential

For CPYMRTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1884
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRTWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1885
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1886
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1887
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1888
ID032224 Non-Confidential

C6.2.96 CPYPT, CPYMT, CPYET

Memory Copy, reads and writes unprivileged. These instructions perform a memory copy. The prologue, main, and
epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYPT, then
CPYMT, and then CPYET.

CPYPT performs some preconditioning of the arguments suitable for using the CPYMT instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory copy. CPYMT performs an IMPLEMENTATION DEFINED
amount of the memory copy. CPYET performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPT, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPT, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPT, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1889
ID032224 Non-Confidential

For CPYMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1890
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYET [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPT [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1891
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1892
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1893
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1894
ID032224 Non-Confidential

C6.2.97 CPYPTN, CPYMTN, CPYETN

Memory Copy, reads and writes unprivileged and non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPTN, then CPYMTN, and then CPYETN.

CPYPTN performs some preconditioning of the arguments suitable for using the CPYMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYETN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPTN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPTN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPTN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1895
ID032224 Non-Confidential

For CPYMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1896
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYETN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPTN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1897
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1898
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1899
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1900
ID032224 Non-Confidential

C6.2.98 CPYPTRN, CPYMTRN, CPYETRN

Memory Copy, reads and writes unprivileged, reads non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPTRN, then CPYMTRN, and then CPYETRN.

CPYPTRN performs some preconditioning of the arguments suitable for using the CPYMTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYETRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPTRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPTRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPTRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1901
ID032224 Non-Confidential

For CPYMTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYETRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1902
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYETRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYETRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPTRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1903
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1904
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1905
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1906
ID032224 Non-Confidential

C6.2.99 CPYPTWN, CPYMTWN, CPYETWN

Memory Copy, reads and writes unprivileged, writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPTWN, then CPYMTWN, and then CPYETWN.

CPYPTWN performs some preconditioning of the arguments suitable for using the CPYMTWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMTWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYETWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPTWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPTWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPTWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1907
ID032224 Non-Confidential

For CPYMTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYETWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1908
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYETWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYETWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPTWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1909
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1910
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1911
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1912
ID032224 Non-Confidential

C6.2.100 CPYPWN, CPYMWN, CPYEWN

Memory Copy, writes non-temporal. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPWN, then
CPYMWN, and then CPYEWN.

CPYPWN performs some preconditioning of the arguments suitable for using the CPYMWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1913
ID032224 Non-Confidential

For CPYMWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1914
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1915
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1916
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1917
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1918
ID032224 Non-Confidential

C6.2.101 CPYPWT, CPYMWT, CPYEWT

Memory Copy, writes unprivileged. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPWT, then
CPYMWT, and then CPYEWT.

CPYPWT performs some preconditioning of the arguments suitable for using the CPYMWT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWT, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWT, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWT, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1919
ID032224 Non-Confidential

For CPYMWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1920
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWT [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1921
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1922
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1923
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1924
ID032224 Non-Confidential

C6.2.102 CPYPWTN, CPYMWTN, CPYEWTN

Memory Copy, writes unprivileged, reads and writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPWTN, then CPYMWTN, and then CPYEWTN.

CPYPWTN performs some preconditioning of the arguments suitable for using the CPYMWTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWTN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWTN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWTN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1925
ID032224 Non-Confidential

For CPYMWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1926
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWTN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1927
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1928
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1929
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1930
ID032224 Non-Confidential

C6.2.103 CPYPWTRN, CPYMWTRN, CPYEWTRN

Memory Copy, writes unprivileged, reads non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPWTRN, then CPYMWTRN, and then CPYEWTRN.

CPYPWTRN performs some preconditioning of the arguments suitable for using the CPYMWTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWTRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWTRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWTRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1931
ID032224 Non-Confidential

For CPYMWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1932
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1933
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1934
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1935
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1936
ID032224 Non-Confidential

C6.2.104 CPYPWTWN, CPYMWTWN, CPYEWTWN

Memory Copy, writes unprivileged and non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPWTWN, then CPYMWTWN, and then CPYEWTWN.

CPYPWTWN performs some preconditioning of the arguments suitable for using the CPYMWTWN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWTWN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYEWTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWTWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWTWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWTWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1937
ID032224 Non-Confidential

For CPYMWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1938
ID032224 Non-Confidential

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1939
ID032224 Non-Confidential

 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1940
ID032224 Non-Confidential

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1941
ID032224 Non-Confidential

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1942
ID032224 Non-Confidential

C6.2.105 CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second
source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align
with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7
is used for the CRC calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all
implementations to implement this instruction.

Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC

(FEAT_CRC32)

CRC32B variant

Applies when sf == 0 && sz == 00.

CRC32B <Wd>, <Wn>, <Wm>

CRC32H variant

Applies when sf == 0 && sz == 01.

CRC32H <Wd>, <Wn>, <Wm>

CRC32W variant

Applies when sf == 0 && sz == 10.

CRC32W <Wd>, <Wn>, <Wm>

CRC32X variant

Applies when sf == 1 && sz == 11.

CRC32X <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sf == '1' && sz != '11' then UNDEFINED;
 if sf == '0' && sz == '11' then UNDEFINED;
 constant integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 0 sz Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

C

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1943
ID032224 Non-Confidential

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

 bits(32) acc = X[n, 32]; // accumulator
 bits(size) val = X[m, size]; // input value
 bits(32) poly = 0x04C11DB7<31:0>;

 bits(32+size) tempacc = BitReverse(acc):Zeros(size);
 bits(size+32) tempval = BitReverse(val):Zeros(32);

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 X[d, 32] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1944
ID032224 Non-Confidential

C6.2.106 CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32C checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second
source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align
with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41
is used for the CRC calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all
implementations to implement this instruction.

Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC

(FEAT_CRC32)

CRC32CB variant

Applies when sf == 0 && sz == 00.

CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH variant

Applies when sf == 0 && sz == 01.

CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW variant

Applies when sf == 0 && sz == 10.

CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX variant

Applies when sf == 1 && sz == 11.

CRC32CX <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sf == '1' && sz != '11' then UNDEFINED;
 if sf == '0' && sz == '11' then UNDEFINED;
 constant integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 1 sz Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

C

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1945
ID032224 Non-Confidential

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

 bits(32) acc = X[n, 32]; // accumulator
 bits(size) val = X[m, size]; // input value
 bits(32) poly = 0x1EDC6F41<31:0>;

 bits(32+size) tempacc = BitReverse(acc):Zeros(size);
 bits(size+32) tempval = BitReverse(val):Zeros(32);

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 X[d, 32] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1946
ID032224 Non-Confidential

C6.2.107 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution arising from data
value prediction. For more information and details of the semantics, see Consumption of Speculative Data Barrier
(CSDB).

Encoding

CSDB

Decode for this encoding

 // Empty.

Operation

 ConsumptionOfSpeculativeDataBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1947
ID032224 Non-Confidential

C6.2.108 CSEL

If the condition is true, Conditional Select writes the value of the first source register to the destination register. If
the condition is false, it writes the value of the second source register to the destination register.

32-bit variant

Applies when sf == 0.

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSEL <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else
 result = X[m, datasize];

 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1948
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1949
ID032224 Non-Confidential

C6.2.109 CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This instruction is an alias of the CSINC instruction. This means that:

• The encodings in this description are named to match the encodings of CSINC.

• The description of CSINC gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CSET <Wd>, <cond>

 is equivalent to

CSINC <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSET <Xd>, <cond>

 is equivalent to

CSINC <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 !=111x 0 1 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1950
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1951
ID032224 Non-Confidential

C6.2.110 CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits
to 0.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.

• The description of CSINV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CSETM <Wd>, <cond>

 is equivalent to

CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSETM <Xd>, <cond>

 is equivalent to

CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 !=111x 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1952
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1953
ID032224 Non-Confidential

C6.2.111 CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC and CSET. See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSINC <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias is preferred when

CINC Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

CSET Rm == '11111' && cond != '111x' && Rn == '11111'

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1954
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else
 result = X[m, datasize];
 result = result + 1;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1955
ID032224 Non-Confidential

C6.2.112 CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV and CSETM. See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSINV <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias is preferred when

CINV Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

CSETM Rm == '11111' && cond != '111x' && Rn == '11111'

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1956
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else
 result = X[m, datasize];
 result = NOT(result);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1957
ID032224 Non-Confidential

C6.2.113 CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the negated value of the second source register.

This instruction is used by the alias CNEG. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSNEG <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else

Alias is preferred when

CNEG cond != '111x' && Rn == Rm

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1958
ID032224 Non-Confidential

 result = X[m, datasize];
 result = NOT(result);
 result = result + 1;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1959
ID032224 Non-Confidential

C6.2.114 CTZ

Count Trailing Zeros counts the number of consecutive binary zero bits, starting from the least significant bit in the
source register, and places the count in the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

CTZ <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CTZ <Xd>, <Xn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = CountLeadingZeroBits(BitReverse(operand1));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1960
ID032224 Non-Confidential

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1961
ID032224 Non-Confidential

C6.2.115 DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

DC <dc_op>, <Xt>

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_DC.

Assembler symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in the
"op1:CRm:op2" field. It can have the following values:

IVAC when op1 = 000, CRm = 0110, op2 = 001

ISW when op1 = 000, CRm = 0110, op2 = 010

CSW when op1 = 000, CRm = 1010, op2 = 010

CISW when op1 = 000, CRm = 1110, op2 = 010

ZVA when op1 = 011, CRm = 0100, op2 = 001

CVAC when op1 = 011, CRm = 1010, op2 = 001

CVAU when op1 = 011, CRm = 1011, op2 = 001

CIVAC when op1 = 011, CRm = 1110, op2 = 001

When FEAT_MTE2 is implemented, the following values are also valid:

IGVAC when op1 = 000, CRm = 0110, op2 = 011

IGSW when op1 = 000, CRm = 0110, op2 = 100

IGDVAC when op1 = 000, CRm = 0110, op2 = 101

IGDSW when op1 = 000, CRm = 0110, op2 = 110

CGSW when op1 = 000, CRm = 1010, op2 = 100

CGDSW when op1 = 000, CRm = 1010, op2 = 110

CIGSW when op1 = 000, CRm = 1110, op2 = 100

CIGDSW when op1 = 000, CRm = 1110, op2 = 110

When FEAT_MTE is implemented, the following values are also valid:

GVA when op1 = 011, CRm = 0100, op2 = 011

GZVA when op1 = 011, CRm = 0100, op2 = 100

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1962
ID032224 Non-Confidential

CGVAC when op1 = 011, CRm = 1010, op2 = 011

CGDVAC when op1 = 011, CRm = 1010, op2 = 101

CGVAP when op1 = 011, CRm = 1100, op2 = 011

CGDVAP when op1 = 011, CRm = 1100, op2 = 101

CGVADP when op1 = 011, CRm = 1101, op2 = 011

CGDVADP when op1 = 011, CRm = 1101, op2 = 101

CIGVAC when op1 = 011, CRm = 1110, op2 = 011

CIGDVAC when op1 = 011, CRm = 1110, op2 = 101

When FEAT_DPB is implemented, the following value is also valid:

CVAP when op1 = 011, CRm = 1100, op2 = 001

When FEAT_DPB2 is implemented, the following value is also valid:

CVADP when op1 = 011, CRm = 1101, op2 = 001

When FEAT_MEC is implemented, the following values are also valid:

CIPAE when op1 = 100, CRm = 1110, op2 = 000

CIGDPAE when op1 = 100, CRm = 1110, op2 = 111

When FEAT_RME is implemented, the following values are also valid:

CIPAPA when op1 = 110, CRm = 1110, op2 = 001

CIGDPAPA when op1 = 110, CRm = 1110, op2 = 101

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1963
ID032224 Non-Confidential

C6.2.116 DCPS1

Debug Change PE State to EL1, when executed in Debug state:

• If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.

• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

• EL1 if the instruction is executed at EL0.

• Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.

• SPSR_ELx becomes UNKNOWN.

• ESR_ELx becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE == 1.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

Encoding

DCPS1 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1964
ID032224 Non-Confidential

C6.2.117 DCPS2

Debug Change PE State to EL2, when executed in Debug state:

• If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.

• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

• EL2 if the instruction is executed at an exception level that is not EL3.

• EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.

• SPSR_ELx becomes UNKNOWN.

• ESR_ELx becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:

• All exception levels if EL2 is not implemented.

• At EL0 and EL1 if EL2 is disabled in the current Security state.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

Encoding

DCPS2 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1965
ID032224 Non-Confidential

C6.2.118 DCPS3

Debug Change PE State to EL3, when executed in Debug state:

• If executed at EL3 selects SP_EL3.

• Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.

On executing a DCPS3 instruction:

• ELR_EL3 becomes UNKNOWN.

• SPSR_EL3 becomes UNKNOWN.

• ESR_EL3 becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:

• EDSCR.SDD == 1.

• EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

Encoding

DCPS3 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1966
ID032224 Non-Confidential

C6.2.119 DGH

Data Gathering Hint is a hint instruction that indicates that it is not expected to be performance optimal to merge
memory accesses with Normal Non-cacheable or Device-GRE attributes appearing in program order before the hint
instruction with any memory accesses appearing after the hint instruction into a single memory transaction on an
interconnect.

System

(FEAT_DGH)

Encoding

DGH

Decode for this encoding

 if !IsFeatureImplemented(FEAT_DGH) then EndOfInstruction();

Operation

 Hint_DGH();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1967
ID032224 Non-Confidential

C6.2.120 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB).

Encoding

DMB <option>|#<imm>

Decode for this encoding

 MBReqDomain domain;
 MBReqTypes types;
 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1968
ID032224 Non-Confidential

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the
#<imm> syntax. All unsupported and reserved options must execute as a full system barrier operation,
but software must not rely on this behavior. For more information on whether an access is before or
after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier
(DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

 DataMemoryBarrier(domain, types);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1969
ID032224 Non-Confidential

C6.2.121 DRPS

Debug restore PE state using the SPSR for the current Exception level. When executed, the PE restores PSTATE
from the SPSR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal exception returns
from AArch64 state.

This instruction is UNDEFINED at EL0.

This instruction is UNDEFINED in Non-debug state.

For more information on the operation of DRPS, see DRPS.

Encoding

DRPS

Decode for this encoding

 if !Halted() || PSTATE.EL == EL0 then UNDEFINED;

Operation

 DRPSInstruction();

1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1970
ID032224 Non-Confidential

C6.2.122 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB).

This instruction is used by the aliases PSSBB and SSBB. See Alias conditions for details of when each alias is
preferred.

Memory barrier

Encoding

DSB <option>|#<imm>

Decode for this encoding

 boolean nXS = FALSE;

 DSBAlias alias;
 case CRm of
 when '0000' alias = DSBAlias_SSBB;
 when '0100' alias = DSBAlias_PSSBB;
 otherwise alias = DSBAlias_DSB;

 MBReqDomain domain;
 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;

 MBReqTypes types;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Memory nXS barrier

(FEAT_XS)

Encoding

DSB <option>nXS

Decode for this encoding

 if !IsFeatureImplemented(FEAT_XS) then UNDEFINED;
 MBReqTypes types = MBReqTypes_All;
 boolean nXS = TRUE;
 DSBAlias alias = DSBAlias_DSB;
 MBReqDomain domain;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 imm2 1 0 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1971
ID032224 Non-Confidential

 case imm2 of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;

Alias conditions

Assembler symbols

<option> For the memory barrier variant: specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of "CRm", other than the values 0b0000 and 0b0100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) or see Data Synchronization Barrier (DSB).

Alias is preferred when

PSSBB CRm == '0100'

SSBB CRm == '0000'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1972
ID032224 Non-Confidential

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

For the memory nXS barrier variant: specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as imm2 = 0b11.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as imm2 = 0b10.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as imm2 = 0b01.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as imm2 = 0b00.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation for all encodings

 case alias of
 when DSBAlias_SSBB
 SpeculativeStoreBypassBarrierToVA();
 when DSBAlias_PSSBB
 SpeculativeStoreBypassBarrierToPA();
 when DSBAlias_DSB
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 if !nXS && IsFeatureImplemented(FEAT_XS) then
 nXS = PSTATE.EL IN {EL0, EL1} && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1';
 DataSynchronizationBarrier(domain, types, nXS);
 otherwise
 Unreachable();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1973
ID032224 Non-Confidential

C6.2.123 DVP

Data Value Prediction Restriction by Context prevents data value predictions that predict execution addresses based
on information gathered from earlier execution within a particular execution context. Data value predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.

For more information, see DVP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES)

Encoding

DVP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #5, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1974
ID032224 Non-Confidential

C6.2.124 EON (shifted register)

Bitwise Exclusive-OR NOT (shifted register) performs a bitwise exclusive-OR NOT of a register value and an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1975
ID032224 Non-Confidential

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 EOR operand2;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1976
ID032224 Non-Confidential

C6.2.125 EOR (immediate)

Bitwise Exclusive-OR (immediate) performs a bitwise exclusive-OR of a register value and an immediate value,
and writes the result to the destination register.

32-bit variant

Applies when sf == 0 && N == 0.

EOR <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

EOR <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 EOR imm;

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

sf 1 0 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1977
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1978
ID032224 Non-Confidential

C6.2.126 EOR (shifted register)

Bitwise Exclusive-OR (shifted register) performs a bitwise exclusive-OR of a register value and an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1979
ID032224 Non-Confidential

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 EOR operand2;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1980
ID032224 Non-Confidential

C6.2.127 ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE
from the SPSR, and branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal exception returns
from AArch64 state.

ERET is UNDEFINED at EL0.

Encoding

ERET

Decode for this encoding

 if PSTATE.EL == EL0 then UNDEFINED;

Operation

 AArch64.CheckForERetTrap(FALSE, TRUE);
 bits(64) target = ELR_ELx[];

 AArch64.ExceptionReturn(target, SPSR_ELx[]);

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A M Rn op4

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1981
ID032224 Non-Confidential

C6.2.128 ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the
modifier and the specified key, the PE restores PSTATE from the SPSR for the current Exception level, and branches
to the authenticated address.

Key A is used for ERETAA. Key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal exception returns
from AArch64 state.

ERETAA and ERETAB are UNDEFINED at EL0.

Integer

(FEAT_PAuth)

ERETAA variant

Applies when M == 0.

ERETAA

ERETAB variant

Applies when M == 1.

ERETAB

Decode for all variants of this encoding

 if PSTATE.EL == EL0 then UNDEFINED;
 boolean use_key_a = (M == '0');

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

Operation

 AArch64.CheckForERetTrap(TRUE, use_key_a);
 bits(64) target = ELR_ELx[];
 bits(64) modifier = SP[];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 AArch64.ExceptionReturn(target, SPSR_ELx[]);

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A Rn op4

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1982
ID032224 Non-Confidential

C6.2.129 ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and
VDISR_EL2.

This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the Arm(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

System

(FEAT_RAS)

Encoding

ESB

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RAS) then EndOfInstruction();

Operation

 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1983
ID032224 Non-Confidential

C6.2.130 EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 0xxxxx.

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit variant

Applies when sf == 1 && N == 1.

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

Decode for all variants of this encoding

 if N != sf then UNDEFINED;
 if sf == '0' && imms<5> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 constant integer lsb = UInt(imms);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<lsb> For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63,
encoded in the "imms" field.

Alias is preferred when

ROR (immediate) Rn == Rm

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1984
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 bits(2*datasize) concat = operand1:operand2;

 result = concat<(lsb+datasize)-1:lsb>;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1985
ID032224 Non-Confidential

C6.2.131 GCSB

Guarded Control Stack Barrier. This instruction generates a GCSB effect.

If FEAT_GCS is not implemented, this instruction executes as a NOP.

System

(FEAT_GCS)

Encoding

GCSB DSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_GCS) then EndOfInstruction();

Operation

 GCSSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1986
ID032224 Non-Confidential

C6.2.132 GCSPOPCX

Guarded Control Stack Pop and Compare exception return record loads an exception return record from the location
indicated by the current Guarded control stack pointer register, compares the loaded values with the current
ELR_ELx, SPSR_ELx, and LR, and increments the pointer by the size of a Guarded control stack exception return
record.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPOPCX {<Xt>}

 is equivalent to

SYS #0, C7, C7, #5{, <Xt>}

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1987
ID032224 Non-Confidential

C6.2.133 GCSPOPM

Guarded Control Stack Pop loads the 64-bit doubleword that is pointed to by the current Guarded control stack
pointer, writes it to the destination register, and increments the current Guarded control stack pointer register by the
size of a Guarded control stack procedure return record.

This instruction is an alias of the SYSL instruction. This means that:

• The encodings in this description are named to match the encodings of SYSL.

• The description of SYSL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPOPM <Xt>

 is equivalent to

SYSL <Xt>, #3, C7, C7, #1

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

The description of SYSL gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1988
ID032224 Non-Confidential

C6.2.134 GCSPOPX

Guarded Control Stack Pop exception return record loads an exception return record from the location indicated by
the current Guarded control stack pointer register, checks that the record is an exception return record, and
increments the pointer by the size of a Guarded control stack exception return record.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPOPX {<Xt>}

 is equivalent to

SYS #0, C7, C7, #6{, <Xt>}

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1989
ID032224 Non-Confidential

C6.2.135 GCSPUSHM

Guarded Control Stack Push decrements the current Guarded control stack pointer register by the size of a Guarded
control procedure return record and stores an entry to the Guarded control stack.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPUSHM <Xt>

 is equivalent to

SYS #3, C7, C7, #0, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1990
ID032224 Non-Confidential

C6.2.136 GCSPUSHX

Guarded Control Stack Push exception return record decrements the current Guarded control stack pointer register
by the size of a Guarded control stack exception return record and stores an exception return record to the Guarded
control stack.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPUSHX {<Xt>}

 is equivalent to

SYS #0, C7, C7, #4{, <Xt>}

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1991
ID032224 Non-Confidential

C6.2.137 GCSSS1

Guarded Control Stack Switch Stack 1 validates that the stack being switched to contains a Valid cap entry, stores
an In-progress cap entry to the stack that is being switched to, and sets the current Guarded control stack pointer to
the stack that is being switched to.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSSS1 <Xt>

 is equivalent to

SYS #3, C7, C7, #2, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1992
ID032224 Non-Confidential

C6.2.138 GCSSS2

Guarded Control Stack Switch Stack 2 validates that the most recent entry of the Guarded control stack being
switched to contains an In-progress cap entry, stores a Valid cap entry to the Guarded control stack that is being
switched from, and sets Xt to the Guarded control stack pointer that is being switched from.

This instruction is an alias of the SYSL instruction. This means that:

• The encodings in this description are named to match the encodings of SYSL.

• The description of SYSL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSSS2 <Xt>

 is equivalent to

SYSL <Xt>, #3, C7, C7, #3

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

The description of SYSL gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1993
ID032224 Non-Confidential

C6.2.139 GCSSTR

Guarded Control Stack Store stores a doubleword from a register to memory. The address that is used for the store
is calculated from a base register.

Integer

(FEAT_GCS)

Encoding

GCSSTR <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_GCS) then UNDEFINED;
 integer n = UInt(Rn);
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) data;

 bits(2) effective_el = PSTATE.EL;

 if effective_el == PSTATE.EL then
 CheckGCSSTREnabled();

 AccessDescriptor accdesc = CreateAccDescGCS(effective_el, MemOp_STORE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 64];
 Mem[address, 8, accdesc] = data;

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1994
ID032224 Non-Confidential

C6.2.140 GCSSTTR

Guarded Control Stack unprivileged Store stores a doubleword from a register to memory. The address that is used
for the store is calculated from a base register.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1 and HCR_EL2.{NV, NV1} is not {1, 1}.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed.

Integer

(FEAT_GCS)

Encoding

GCSSTTR <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_GCS) then UNDEFINED;
 integer n = UInt(Rn);
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) data;

 bits(2) effective_el = if AArch64.IsUnprivAccessPriv() then PSTATE.EL else EL0;

 if effective_el == PSTATE.EL then
 CheckGCSSTREnabled();

 AccessDescriptor accdesc = CreateAccDescGCS(effective_el, MemOp_STORE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 64];
 Mem[address, 8, accdesc] = data;

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1995
ID032224 Non-Confidential

C6.2.141 GMI

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second source register,
writing the new excluded set to the destination register.

Integer

(FEAT_MTE)

Encoding

GMI <Xd>, <Xn|SP>, <Xm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.

Operation

 bits(64) address = if n == 31 then SP[] else X[n, 64];
 bits(64) mask = X[m, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(address);

 mask<UInt(tag)> = '1';
 X[d, 64] = mask;

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 1 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1996
ID032224 Non-Confidential

C6.2.142 HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

Some encodings described here are not allocated in this revision of the architecture, and behave as NOPs. These
encodings might be allocated to other hint functionality in future revisions of the architecture and therefore must
not be used by software.

Encoding

HINT #<imm>

Decode for this encoding

 SystemHintOp op;

 case CRm:op2 of
 when '0000 000' op = SystemHintOp_NOP;
 when '0000 001' op = SystemHintOp_YIELD;
 when '0000 010' op = SystemHintOp_WFE;
 when '0000 011' op = SystemHintOp_WFI;
 when '0000 100' op = SystemHintOp_SEV;
 when '0000 101' op = SystemHintOp_SEVL;
 when '0000 110'
 if !IsFeatureImplemented(FEAT_DGH) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_DGH;
 when '0000 111' SEE "XPACLRI";
 when '0001 xxx'
 case op2 of
 when '000' SEE "PACIA1716";
 when '010' SEE "PACIB1716";
 when '100' SEE "AUTIA1716";
 when '110' SEE "AUTIB1716";
 otherwise EndOfInstruction();
 when '0010 000'
 if !IsFeatureImplemented(FEAT_RAS) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_ESB;
 when '0010 001'
 if !IsFeatureImplemented(FEAT_SPE) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_PSB;
 when '0010 010'
 if !IsFeatureImplemented(FEAT_TRF) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_TSB;
 when '0010 011'
 if !IsFeatureImplemented(FEAT_GCS) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_GCSB;
 when '0010 100'
 op = SystemHintOp_CSDB;
 when '0010 110'
 if !IsFeatureImplemented(FEAT_CLRBHB) then
 EndOfInstruction();
 op = SystemHintOp_CLRBHB;
 when '0011 xxx'
 case op2 of
 when '000' SEE "PACIAZ";
 when '001' SEE "PACIASP";
 when '010' SEE "PACIBZ";
 when '011' SEE "PACIBSP";
 when '100' SEE "AUTIAZ";

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1997
ID032224 Non-Confidential

 when '101' SEE "AUTIASP";
 when '110' SEE "AUTIBZ";
 when '111' SEE "AUTIBSP";
 when '0100 xx0'
 op = SystemHintOp_BTI;
 // Check branch target compatibility between BTI instruction and PSTATE.BTYPE
 SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
 when '0101 000'
 if !IsFeatureImplemented(FEAT_CHK) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_CHKFEAT;
 otherwise EndOfInstruction();

Assembler symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127, encoded in the "CRm:op2" field.

The encodings that are allocated to architectural hint functionality are described in the 'Hints' table
in the 'Index by Encoding'.

Note

For allocated encodings of "CRm:op2":

• A disassembler will disassemble the allocated instruction, rather than the HINT instruction.

• An assembler may support assembly of allocated encodings using HINT with the
corresponding <imm> value, but it is not required to do so.

Operation

 case op of
 when SystemHintOp_YIELD
 Hint_Yield();

 when SystemHintOp_DGH
 Hint_DGH();

 when SystemHintOp_WFE
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFE(localtimeout, WFxType_WFE);

 when SystemHintOp_WFI
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFI(localtimeout, WFxType_WFI);

 when SystemHintOp_SEV
 SendEvent();

 when SystemHintOp_SEVL
 SendEventLocal();

 when SystemHintOp_ESB
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

 when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();

 when SystemHintOp_TSB
 TraceSynchronizationBarrier();

 when SystemHintOp_GCSB

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1998
ID032224 Non-Confidential

 GCSSynchronizationBarrier();

 when SystemHintOp_CHKFEAT
 X[16, 64] = AArch64.ChkFeat(X[16, 64]);

 when SystemHintOp_CSDB
 ConsumptionOfSpeculativeDataBarrier();

 when SystemHintOp_CLRBHB
 Hint_CLRBHB();

 when SystemHintOp_BTI
 SetBTypeNext('00');

 when SystemHintOp_NOP
 return; // do nothing

 otherwise
 Unreachable();

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1999
ID032224 Non-Confidential

C6.2.143 HLT

Halt instruction. An HLT instruction can generate a Halt Instruction debug event, which causes entry into Debug
state.

Within a guarded memory region, while PSTATE.BTYPE != 0b00, a HLT instruction that would cause entry into
Debug state will not generate a Branch Target Exception and will cause entry into Debug state as normal. For more
information, see PSTATE.BTYPE.

Encoding

HLT #<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
 if IsFeatureImplemented(FEAT_BTI) then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 FaultRecord fault = NoFault();
 Halt(DebugHalt_HaltInstruction, FALSE, fault);

1 1 0 1 0 1 0 0 0 1 0 imm16 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2000
ID032224 Non-Confidential

C6.2.144 HVC

Hypervisor Call causes an exception to EL2. Software executing at EL1 can use this instruction to call the
hypervisor to request a service.

The HVC instruction is UNDEFINED:

• When EL3 is implemented and SCR_EL3.HCE is set to 0.

• When EL3 is not implemented and HCR_EL2.HCD is set to 1.

• When EL2 is not implemented.

• At EL1 if EL2 is not enabled in the current Security state.

• At EL0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELx, using
the EC value 0x16, and the value of the immediate argument.

Encoding

HVC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 if !HaveEL(EL2) || PSTATE.EL == EL0 || (PSTATE.EL == EL1 && !EL2Enabled()) then
 UNDEFINED;

 bits(1) hvc_enable = if HaveEL(EL3) then SCR_EL3.HCE else NOT(HCR_EL2.HCD);

 if hvc_enable == '0' then
 UNDEFINED;
 else
 AArch64.CallHypervisor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2001
ID032224 Non-Confidential

C6.2.145 IC

Instruction Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance,
address translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

IC <ic_op>{, <Xt>}

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_IC.

Assembler symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in the
"op1:CRm:op2" field. It can have the following values:

IALLUIS when op1 = 000, CRm = 0001, op2 = 000

IALLU when op1 = 000, CRm = 0101, op2 = 000

IVAU when op1 = 011, CRm = 0101, op2 = 001

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2002
ID032224 Non-Confidential

C6.2.146 IRG

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and writes the
result to the destination register. Any tags specified in the optional second source register or in GCR_EL1.Exclude
are excluded from the selection of the random Logical Address Tag.

Integer

(FEAT_MTE)

Encoding

IRG <Xd|SP>, <Xn|SP>{, <Xm>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.
Defaults to XZR if absent.

Operation

 bits(64) operand = if n == 31 then SP[] else X[n, 64];
 bits(64) exclude_reg = X[m, 64];
 bits(16) exclude = exclude_reg<15:0> OR GCR_EL1.Exclude;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 if GCR_EL1.RRND == '1' then
 if IsOnes(exclude) then
 rtag = '0000';
 else
 rtag = ChooseRandomNonExcludedTag(exclude);
 else
 bits(4) start_tag = RGSR_EL1.TAG;
 bits(4) offset = AArch64.RandomTag();

 rtag = AArch64.ChooseNonExcludedTag(start_tag, offset, exclude);

 RGSR_EL1.TAG = rtag;
 else
 rtag = '0000';

 bits(64) result = AArch64.AddressWithAllocationTag(operand, rtag);

 if d == 31 then

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 0 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2003
ID032224 Non-Confidential

 SP[] = result;
 else
 X[d, 64] = result;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2004
ID032224 Non-Confidential

C6.2.147 ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).

Encoding

ISB {<option>|#<imm>}

Decode for this encoding

 // No additional decoding required

Assembler symbols

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of "CRm" are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

 InstructionSynchronizationBarrier();
 if IsFeatureImplemented(FEAT_BRBE) && BRBEBranchOnISB() then
 BRBEISB();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2005
ID032224 Non-Confidential

C6.2.148 LD64B

Single-copy Atomic 64-byte Load derives an address from a base register value, loads eight 64-bit doublewords
from a memory location, and writes them to consecutive registers, Xt to X(t+7). The data that is loaded is atomic
and is required to be 64-byte aligned.

Integer

(FEAT_LS64)

Encoding

LD64B <Xt>, [<Xn|SP> {,#0}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_LOAD;
 boolean tagchecked = n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckLDST64BEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemLoad64B(address, accdesc);

 for i = 0 to 7
 value = data<63+64*i:64*i>;
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 X[t+i, 64] = value;

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2006
ID032224 Non-Confidential

C6.2.149 LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.

• LDADD has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STADD, STADDL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDADD variant

Applies when size == 10 && A == 0 && R == 0.

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDA variant

Applies when size == 10 && A == 1 && R == 0.

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDAL variant

Applies when size == 10 && A == 1 && R == 1.

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDL variant

Applies when size == 10 && A == 0 && R == 1.

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDADD variant

Applies when size == 11 && A == 0 && R == 0.

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDA variant

Applies when size == 11 && A == 1 && R == 0.

LDADDA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2007
ID032224 Non-Confidential

64-bit LDADDAL variant

Applies when size == 11 && A == 1 && R == 1.

LDADDAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDL variant

Applies when size == 11 && A == 0 && R == 1.

LDADDL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ADD, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STADD, STADDL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2008
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2009
ID032224 Non-Confidential

C6.2.150 LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it,
and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.

• LDADDLB and LDADDALB store to memory with release semantics.

• LDADDB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STADDB, STADDLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDADDAB variant

Applies when A == 1 && R == 0.

LDADDAB <Ws>, <Wt>, [<Xn|SP>]

LDADDALB variant

Applies when A == 1 && R == 1.

LDADDALB <Ws>, <Wt>, [<Xn|SP>]

LDADDB variant

Applies when A == 0 && R == 0.

LDADDB <Ws>, <Wt>, [<Xn|SP>]

LDADDLB variant

Applies when A == 0 && R == 1.

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2010
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ADD, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STADDB, STADDLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2011
ID032224 Non-Confidential

C6.2.151 LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a
register to it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

• LDADDLH and LDADDALH store to memory with release semantics.

• LDADDH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STADDH, STADDLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDADDAH variant

Applies when A == 1 && R == 0.

LDADDAH <Ws>, <Wt>, [<Xn|SP>]

LDADDALH variant

Applies when A == 1 && R == 1.

LDADDALH <Ws>, <Wt>, [<Xn|SP>]

LDADDH variant

Applies when A == 0 && R == 0.

LDADDH <Ws>, <Wt>, [<Xn|SP>]

LDADDLH variant

Applies when A == 0 && R == 1.

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2012
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ADD, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STADDH, STADDLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2013
ID032224 Non-Confidential

C6.2.152 LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from the derived address in memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

No offset

(FEAT_LRCPC)

32-bit variant

Applies when size == 10.

LDAPR <Wt>, [<Xn|SP> {,#0}]

64-bit variant

Applies when size == 11.

LDAPR <Xt>, [<Xn|SP> {,#0}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 integer offset = 0;
 boolean wb_unknown = FALSE;

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 constant integer regsize = if elsize == 64 then 64 else 32;
 constant integer datasize = elsize;
 boolean tagchecked = n != 31;

Post-index

(FEAT_LRCPC3)

1 x 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs

1 x 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2014
ID032224 Non-Confidential

32-bit variant

Applies when size == 10.

LDAPR <Wt>, [<Xn|SP>], #4

64-bit variant

Applies when size == 11.

LDAPR <Xt>, [<Xn|SP>], #8

Decode for all variants of this encoding

 boolean wback = TRUE;

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << UInt(size);
 constant integer offset = 1 << UInt(size);

 boolean tagchecked = TRUE;

 boolean wb_unknown = FALSE;

 if n == t && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 else

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2015
ID032224 Non-Confidential

 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2016
ID032224 Non-Confidential

C6.2.153 LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived
address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC)

Encoding

LDAPRB <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

0 0 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2017
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2018
ID032224 Non-Confidential

C6.2.154 LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC)

Encoding

LDAPRH <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

0 1 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2019
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2020
ID032224 Non-Confidential

C6.2.155 LDAPUR

Load-Acquire RCpc Register (unscaled) calculates an address from a base register and an immediate offset, loads
a 32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when size == 10.

LDAPUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDAPUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;

1 x 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2021
ID032224 Non-Confidential

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2022
ID032224 Non-Confidential

C6.2.156 LDAPURB

Load-Acquire RCpc Register Byte (unscaled) calculates an address from a base register and an immediate offset,
loads a byte from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];

0 0 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2023
ID032224 Non-Confidential

 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2024
ID032224 Non-Confidential

C6.2.157 LDAPURH

Load-Acquire RCpc Register Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a halfword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];

0 1 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2025
ID032224 Non-Confidential

 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2026
ID032224 Non-Confidential

C6.2.158 LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) calculates an address from a base register and an immediate
offset, loads a signed byte from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when opc == 11.

LDAPURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then

0 0 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2027
ID032224 Non-Confidential

 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 if memop == MemOp_LOAD then
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 elsif memop == MemOp_STORE then
 accdesc = CreateAccDescAcqRel(memop, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2028
ID032224 Non-Confidential

C6.2.159 LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) calculates an address from a base register and an
immediate offset, loads a signed halfword from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when opc == 11.

LDAPURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then

0 1 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2029
ID032224 Non-Confidential

 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 if memop == MemOp_LOAD then
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 elsif memop == MemOp_STORE then
 accdesc = CreateAccDescAcqRel(memop, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2030
ID032224 Non-Confidential

C6.2.160 LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled) calculates an address from a base register and an immediate
offset, loads a signed word from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];

1 0 0 1 1 0 0 1 1 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2031
ID032224 Non-Confidential

 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2032
ID032224 Non-Confidential

C6.2.161 LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from
memory, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

32-bit variant

Applies when size == 10.

LDAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 constant integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2033
ID032224 Non-Confidential

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2034
ID032224 Non-Confidential

C6.2.162 LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire,
Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2035
ID032224 Non-Confidential

C6.2.163 LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2036
ID032224 Non-Confidential

C6.2.164 LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or
two 64-bit doublewords from memory, and writes them to two registers. For information on single-copy atomicity
and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The PE
marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics,
as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when sz == 0.

LDAXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

LDAXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDAXP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 1 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L Rs o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2037
ID032224 Non-Confidential

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t, datasize] = bits(datasize) UNKNOWN; // In this case t = t2
 elsif elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 X[t, datasize-elsize] = data<datasize-1:elsize>;
 X[t2, elsize] = data<elsize-1:0>;
 else
 X[t, elsize] = data<elsize-1:0>;
 X[t2, datasize-elsize] = data<datasize-1:elsize>;
 else // elsize == 64
 // 64-bit load exclusive pair (not atomic), but must be 128-bit aligned
 if !IsAligned(address, dbytes) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 bits(64) address2 = GenerateAddress(address, 8, accdesc);
 X[t, 64] = Mem[address, 8, accdesc];
 X[t2, 64] = Mem[address2, 8, accdesc];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2038
ID032224 Non-Confidential

C6.2.165 LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics as
described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDAXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2039
ID032224 Non-Confidential

 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2040
ID032224 Non-Confidential

C6.2.166 LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Encoding

LDAXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 1);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2041
ID032224 Non-Confidential

C6.2.167 LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Encoding

LDAXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 2);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2042
ID032224 Non-Confidential

C6.2.168 LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result
back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.

• LDCLR has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STCLR, STCLRL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDCLR variant

Applies when size == 10 && A == 0 && R == 0.

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRA variant

Applies when size == 10 && A == 1 && R == 0.

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRAL variant

Applies when size == 10 && A == 1 && R == 1.

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRL variant

Applies when size == 10 && A == 0 && R == 1.

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDCLR variant

Applies when size == 11 && A == 0 && R == 0.

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRA variant

Applies when size == 11 && A == 1 && R == 0.

LDCLRA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2043
ID032224 Non-Confidential

64-bit LDCLRAL variant

Applies when size == 11 && A == 1 && R == 1.

LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRL variant

Applies when size == 11 && A == 0 && R == 1.

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STCLR, STCLRL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2044
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2045
ID032224 Non-Confidential

C6.2.169 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.

• LDCLRLB and LDCLRALB store to memory with release semantics.

• LDCLRB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STCLRB, STCLRLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDCLRAB variant

Applies when A == 1 && R == 0.

LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

LDCLRALB variant

Applies when A == 1 && R == 1.

LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

LDCLRB variant

Applies when A == 0 && R == 0.

LDCLRB <Ws>, <Wt>, [<Xn|SP>]

LDCLRLB variant

Applies when A == 0 && R == 1.

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2046
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STCLRB, STCLRLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2047
ID032224 Non-Confidential

C6.2.170 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND
with the complement of the value held in a register on it, and stores the result back to memory. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

• LDCLRLH and LDCLRALH store to memory with release semantics.

• LDCLRH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STCLRH, STCLRLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDCLRAH variant

Applies when A == 1 && R == 0.

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

LDCLRALH variant

Applies when A == 1 && R == 1.

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

LDCLRH variant

Applies when A == 0 && R == 0.

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

LDCLRLH variant

Applies when A == 0 && R == 1.

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2048
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STCLRH, STCLRLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2049
ID032224 Non-Confidential

C6.2.171 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL

Atomic bit clear on quadword in memory atomically loads a 128-bit quadword from memory, performs a bitwise
AND with the complement of the value held in a pair of registers on it, and stores the result back to memory. The
value initially loaded from memory is returned in the same pair of registers.

• LDCLRPA and LDCLRPAL load from memory with acquire semantics.

• LDCLRPL and LDCLRPAL store to memory with release semantics.

• LDCLRP has neither acquire nor release semantics.

Integer

(FEAT_LSE128)

LDCLRP variant

Applies when A == 0 && R == 0.

LDCLRP <Xt1>, <Xt2>, [<Xn|SP>]

LDCLRPA variant

Applies when A == 1 && R == 0.

LDCLRPA <Xt1>, <Xt2>, [<Xn|SP>]

LDCLRPAL variant

Applies when A == 1 && R == 1.

LDCLRPAL <Xt1>, <Xt2>, [<Xn|SP>]

LDCLRPL variant

Applies when A == 0 && R == 1.

LDCLRPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE128) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);
 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2050
ID032224 Non-Confidential

 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) value1 = X[t, 64];
 bits(64) value2 = X[t2, 64];
 bits(128) data;
 bits(128) store_value;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) comparevalue = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 if rt_unknown then
 data = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = data<127:64>;
 X[t2, 64] = data<63:0>;
 else
 X[t, 64] = data<63:0>;
 X[t2, 64] = data<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2051
ID032224 Non-Confidential

C6.2.172 LDEOR, LDEORA, LDEORAL, LDEORL

Atomic Exclusive-OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive-OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• LDEOR has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STEOR, STEORL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDEOR variant

Applies when size == 10 && A == 0 && R == 0.

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORA variant

Applies when size == 10 && A == 1 && R == 0.

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORAL variant

Applies when size == 10 && A == 1 && R == 1.

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORL variant

Applies when size == 10 && A == 0 && R == 1.

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDEOR variant

Applies when size == 11 && A == 0 && R == 0.

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORA variant

Applies when size == 11 && A == 1 && R == 0.

LDEORA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2052
ID032224 Non-Confidential

64-bit LDEORAL variant

Applies when size == 11 && A == 1 && R == 1.

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORL variant

Applies when size == 11 && A == 0 && R == 1.

LDEORL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_EOR, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STEOR, STEORL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2053
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2054
ID032224 Non-Confidential

C6.2.173 LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic Exclusive-OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive-OR
with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

• LDEORLB and LDEORALB store to memory with release semantics.

• LDEORB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STEORB, STEORLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDEORAB variant

Applies when A == 1 && R == 0.

LDEORAB <Ws>, <Wt>, [<Xn|SP>]

LDEORALB variant

Applies when A == 1 && R == 1.

LDEORALB <Ws>, <Wt>, [<Xn|SP>]

LDEORB variant

Applies when A == 0 && R == 0.

LDEORB <Ws>, <Wt>, [<Xn|SP>]

LDEORLB variant

Applies when A == 0 && R == 1.

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2055
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_EOR, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STEORB, STEORLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2056
ID032224 Non-Confidential

C6.2.174 LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic Exclusive-OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an
exclusive-OR with the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.

• LDEORLH and LDEORALH store to memory with release semantics.

• LDEORH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STEORH, STEORLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDEORAH variant

Applies when A == 1 && R == 0.

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

LDEORALH variant

Applies when A == 1 && R == 1.

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

LDEORH variant

Applies when A == 0 && R == 0.

LDEORH <Ws>, <Wt>, [<Xn|SP>]

LDEORLH variant

Applies when A == 0 && R == 1.

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2057
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_EOR, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STEORH, STEORLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2058
ID032224 Non-Confidential

C6.2.175 LDG

Load Allocation Tag loads an Allocation Tag from a memory address, generates a Logical Address Tag from the
Allocation Tag and merges it into the destination register. The address used for the load is calculated from the base
register and an immediate signed offset scaled by the Tag granule.

Integer

(FEAT_MTE)

Encoding

LDG <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation

 bits(64) address;
 bits(4) tag;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_LOAD);

 address = GenerateAddress(address, offset, accdesc);
 address = Align(address, TAG_GRANULE);

 tag = AArch64.MemTag[address, accdesc];
 X[t, 64] = AArch64.AddressWithAllocationTag(X[t, 64], tag);

1 1 0 1 1 0 0 1 0 1 1 imm9 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2059
ID032224 Non-Confidential

C6.2.176 LDGM

Load Tag Multiple reads a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and writes the Allocation Tag read from address A to the destination register at
4*A<7:4>+3:4*A<7:4>. Bits of the destination register not written with an Allocation Tag are set to 0.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Integer

(FEAT_MTE2)

Encoding

LDGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE2) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = Zeros(64);
 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
 address = Align(address, size);
 constant integer count = size >> LOG2_TAG_GRANULE;
 integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);
 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_LOAD);

 for i = 0 to count-1
 bits(4) tag = AArch64.MemTag[address, accdesc];
 Elem[data, index, 4] = tag;
 address = GenerateAddress(address, TAG_GRANULE, accdesc);
 index = index + 1;

 X[t, 64] = data;

1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2060
ID032224 Non-Confidential

C6.2.177 LDIAPP

Load-Acquire RCpc ordered Pair of registers calculates an address from a base register value and an optional offset,
loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers. For information
on single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of
data accesses. The instruction also has memory ordering semantics, as described in Load-Acquire,
Load-AcquirePC, and Store-Release, except that:

• The Memory effects associated with Xt1/Wt1 are Ordered-before the Memory effects associated with
Xt2/Wt2.

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC3)

32-bit variant

Applies when size == 10 && opc2 == 0001.

LDIAPP <Wt1>, <Wt2>, [<Xn|SP>]

32-bit post-index variant

Applies when size == 10 && opc2 == 0000.

LDIAPP <Wt1>, <Wt2>, [<Xn|SP>], #8

64-bit variant

Applies when size == 11 && opc2 == 0001.

LDIAPP <Xt1>, <Xt2>, [<Xn|SP>]

64-bit post-index variant

Applies when size == 11 && opc2 == 0000.

LDIAPP <Xt1>, <Xt2>, [<Xn|SP>], #16

Decode for all variants of this encoding

 boolean postindex;
 boolean wback;
 postindex = opc2<0> == '0';
 wback = opc2<0> == '0';

1 x 0 1 1 0 0 1 0 1 0 Rt2 0 0 0 x 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

size L opc2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2061
ID032224 Non-Confidential

Notes for all encodings

LDIAPP has the same CONSTRAINED UNPREDICTABLE behavior as LDP. For information about this CONSTRAINED
UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and
particularly LDP and LDIAPP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Shared decode for all encodings

 integer offset;
 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 constant integer scale = 2 + UInt(size<0>);
 constant integer datasize = 8 << scale;
 offset = if opc2<0> == '0' then (2 << scale) else 0;
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2062
ID032224 Non-Confidential

 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 accdesc.ispair = TRUE;
 full_data = Mem[address, 2*dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;

 X[t, datasize] = data1;
 X[t2, datasize] = data2;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2063
ID032224 Non-Confidential

C6.2.178 LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information
about memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

32-bit variant

Applies when size == 10.

LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDLAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 constant integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_LOAD, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2064
ID032224 Non-Confidential

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2065
ID032224 Non-Confidential

C6.2.179 LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information about
memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

Encoding

LDLARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_LOAD, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2066
ID032224 Non-Confidential

C6.2.180 LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information
about memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

Encoding

LDLARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_LOAD, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2067
ID032224 Non-Confidential

C6.2.181 LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/store addressing modes. For information about Non-temporal
pair instructions, see Load/store non-temporal pair.

32-bit variant

Applies when opc == 00.

LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc<0> == '1' then UNDEFINED;

x 0 1 0 1 0 0 0 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2068
ID032224 Non-Confidential

 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, TRUE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 if IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 accdesc.ispair = TRUE;
 full_data = Mem[address, 2*dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 X[t, datasize] = data1;
 X[t2, datasize] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2069
ID032224 Non-Confidential

C6.2.182 LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory
accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

x 0 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2070
ID032224 Non-Confidential

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDP and LDIAPP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
 boolean signed = (opc<0> != '0');
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2071
ID032224 Non-Confidential

 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if !signed && IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 accdesc.ispair = TRUE;
 full_data = Mem[address, 2*dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 if signed then
 X[t, 64] = SignExtend(data1, 64);
 X[t2, 64] = SignExtend(data2, 64);
 else
 X[t, datasize] = data1;
 X[t2, datasize] = data2;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2072
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2073
ID032224 Non-Confidential

C6.2.183 LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads
two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about memory
accesses, see Load/store addressing modes.

Post-index

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

0 1 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

0 1 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

0 1 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2074
ID032224 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDPSW.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the
range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 bits(64) offset = LSL(SignExtend(imm7, 64), 2);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(32) data1;
 bits(32) data2;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2075
ID032224 Non-Confidential

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, 4, accdesc);
 data1 = Mem[address, 4, accdesc];
 data2 = Mem[address2, 4, accdesc];
 if rt_unknown then
 data1 = bits(32) UNKNOWN;
 data2 = bits(32) UNKNOWN;
 X[t, 64] = SignExtend(data1, 64);
 X[t2, 64] = SignExtend(data2, 64);
 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2076
ID032224 Non-Confidential

C6.2.184 LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/store addressing modes. The Unsigned offset variant scales the immediate offset value by the size of the
value accessed before adding it to the base register value.

Post-index

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

1 x 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 x 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2077
ID032224 Non-Confidential

Unsigned offset

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDR (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;
 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

1 x 1 1 1 0 0 1 0 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2078
ID032224 Non-Confidential

 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2079
ID032224 Non-Confidential

C6.2.185 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 00.

LDR <Wt>, <label>

64-bit variant

Applies when opc == 01.

LDR <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 MemOp memop = if opc == '11' then MemOp_PREFETCH else MemOp_LOAD;
 constant integer size = 4 << UInt(opc<0>);
 boolean signed = opc == '10';

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC64 + offset;
 bits(size*8) data;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, FALSE);
 case memop of
 when MemOp_LOAD
 data = Mem[address, size, accdesc];
 if signed then
 X[t, 64] = SignExtend(data, 64);
 else
 X[t, size*8] = data;

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

0 x 0 1 1 0 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2080
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2081
ID032224 Non-Confidential

C6.2.186 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For
information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

1 x 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2082
ID032224 Non-Confidential

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2083
ID032224 Non-Confidential

C6.2.187 LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a
modifier of zero and the specified key, adds an immediate offset to the authenticated address, and loads a 64-bit
doubleword from memory at this resulting address into a register.

Key A is used for LDRAA. Key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. For information on behavior if the
authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction
is used. In this case, the address that is written back to the base register does not include the pointer authentication
code.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_PAuth)

Key A, offset variant

Applies when M == 0 && W == 0.

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]

Key A, pre-indexed variant

Applies when M == 0 && W == 1.

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]!

Key B, offset variant

Applies when M == 1 && W == 0.

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]

Key B, pre-indexed variant

Applies when M == 1 && W == 1.

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_PAuth) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 boolean wback = (W == '1');
 boolean use_key_a = (M == '0');
 bits(10) S10 = S:imm9;
 bits(64) offset = LSL(SignExtend(S10, 64), 3);
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

1 1 1 1 1 0 0 0 M S 1 imm9 W 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2084
ID032224 Non-Confidential

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting
to 0 and encoded in the "S:imm9" field as <simm>/8.

Operation

 bits(64) address;
 bits(64) data;
 boolean privileged = PSTATE.EL != EL0;
 boolean wb_unknown = FALSE;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);
 if wback && n == t && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 if use_key_a then
 address = AuthDA(address, X[31, 64], TRUE);
 else
 address = AuthDB(address, X[31, 64], TRUE);

 if n == 31 then
 CheckSPAlignment();

 address = GenerateAddress(address, offset, accdesc);
 data = Mem[address, 8, accdesc];
 X[t, 64] = data;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2085
ID032224 Non-Confidential

C6.2.188 LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/store addressing modes.

Post-index

Encoding

LDRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2086
ID032224 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRB (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2087
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2088
ID032224 Non-Confidential

C6.2.189 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Extended register variant

Applies when option != 011.

LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option == 011.

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 0 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2089
ID032224 Non-Confidential

Operation

 bits(64) offset = ExtendReg(m, extend_type, 0, 64);
 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2090
ID032224 Non-Confidential

C6.2.190 LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/store addressing modes.

Post-index

Encoding

LDRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRH <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRH <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

0 1 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 1 0 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2091
ID032224 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRH (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2092
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2093
ID032224 Non-Confidential

C6.2.191 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Encoding

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 1 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2094
ID032224 Non-Confidential

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2095
ID032224 Non-Confidential

C6.2.192 LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an immediate
offset. For information about memory accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

0 0 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2096
ID032224 Non-Confidential

Unsigned offset

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSB (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (wback || n != 31);

0 0 1 1 1 0 0 1 1 x imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2097
ID032224 Non-Confidential

 boolean wb_unknown = FALSE;
 boolean rt_unknown = FALSE;
 Constraint c;

 if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2098
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2099
ID032224 Non-Confidential

C6.2.193 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

32-bit with extended register offset variant

Applies when opc == 11 && option != 011.

LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

32-bit with shifted register offset variant

Applies when opc == 11 && option == 011.

LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset variant

Applies when opc == 10 && option != 011.

LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

64-bit with shifted register offset variant

Applies when opc == 10 && option == 011.

LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

0 0 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2100
ID032224 Non-Confidential

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, 0, 64);
 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2101
ID032224 Non-Confidential

C6.2.194 LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

0 1 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2102
ID032224 Non-Confidential

Unsigned offset

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSH (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (wback || n != 31);

0 1 1 1 1 0 0 1 1 x imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2103
ID032224 Non-Confidential

 boolean wb_unknown = FALSE;
 boolean rt_unknown = FALSE;
 Constraint c;

 if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2104
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2105
ID032224 Non-Confidential

C6.2.195 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory
accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

0 1 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2106
ID032224 Non-Confidential

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2107
ID032224 Non-Confidential

C6.2.196 LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result
to a register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/store addressing modes.

Post-index

Encoding

LDRSW <Xt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRSW <Xt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 2);

1 0 1 1 1 0 0 0 1 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 0 1 1 1 0 0 0 1 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 0 1 1 1 0 0 1 1 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2108
ID032224 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSW (immediate).

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to
0 and encoded in the "imm12" field as <pimm>/4.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(32) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);
 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2109
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2110
ID032224 Non-Confidential

C6.2.197 LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to a register. For information about memory accesses, see Load/store addressing modes.

Encoding

LDRSW <Xt>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC64 + offset;
 bits(32) data;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, FALSE);
 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 0 0 1 1 0 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2111
ID032224 Non-Confidential

C6.2.198 LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value,
loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register value
can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/store addressing modes.

Encoding

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 2 else 0;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#2 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

1 0 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2112
ID032224 Non-Confidential

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(32) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2113
ID032224 Non-Confidential

C6.2.199 LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.

• LDSET has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses see Load/store addressing modes.

This instruction is used by the alias STSET, STSETL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDSET variant

Applies when size == 10 && A == 0 && R == 0.

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETA variant

Applies when size == 10 && A == 1 && R == 0.

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETL variant

Applies when size == 10 && A == 0 && R == 1.

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSET variant

Applies when size == 11 && A == 0 && R == 0.

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETA variant

Applies when size == 11 && A == 1 && R == 0.

LDSETA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2114
ID032224 Non-Confidential

64-bit LDSETAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETL variant

Applies when size == 11 && A == 0 && R == 1.

LDSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STSET, STSETL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2115
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2116
ID032224 Non-Confidential

C6.2.200 LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

• LDSETLB and LDSETALB store to memory with release semantics.

• LDSETB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSETB, STSETLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSETAB variant

Applies when A == 1 && R == 0.

LDSETAB <Ws>, <Wt>, [<Xn|SP>]

LDSETALB variant

Applies when A == 1 && R == 1.

LDSETALB <Ws>, <Wt>, [<Xn|SP>]

LDSETB variant

Applies when A == 0 && R == 0.

LDSETB <Ws>, <Wt>, [<Xn|SP>]

LDSETLB variant

Applies when A == 0 && R == 1.

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2117
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSETB, STSETLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2118
ID032224 Non-Confidential

C6.2.201 LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with
the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.

• LDSETLH and LDSETALH store to memory with release semantics.

• LDSETH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSETH, STSETLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSETAH variant

Applies when A == 1 && R == 0.

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

LDSETALH variant

Applies when A == 1 && R == 1.

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

LDSETH variant

Applies when A == 0 && R == 0.

LDSETH <Ws>, <Wt>, [<Xn|SP>]

LDSETLH variant

Applies when A == 0 && R == 1.

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2119
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSETH, STSETLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2120
ID032224 Non-Confidential

C6.2.202 LDSETP, LDSETPA, LDSETPAL, LDSETPL

Atomic bit set on quadword in memory atomically loads a 128-bit quadword from memory, performs a bitwise OR
with the value held in a pair of registers on it, and stores the result back to memory. The value initially loaded from
memory is returned in the same pair of registers.

• LDSETPA and LDSETPAL load from memory with acquire semantics.

• LDSETPL and LDSETPAL store to memory with release semantics.

• LDSETP has neither acquire nor release semantics.

Integer

(FEAT_LSE128)

LDSETP variant

Applies when A == 0 && R == 0.

LDSETP <Xt1>, <Xt2>, [<Xn|SP>]

LDSETPA variant

Applies when A == 1 && R == 0.

LDSETPA <Xt1>, <Xt2>, [<Xn|SP>]

LDSETPAL variant

Applies when A == 1 && R == 1.

LDSETPAL <Xt1>, <Xt2>, [<Xn|SP>]

LDSETPL variant

Applies when A == 0 && R == 1.

LDSETPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE128) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2121
ID032224 Non-Confidential

 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) value1 = X[t, 64];
 bits(64) value2 = X[t2, 64];
 bits(128) data;
 bits(128) store_value;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) comparevalue = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 if rt_unknown then
 data = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = data<127:64>;
 X[t2, 64] = data<63:0>;
 else
 X[t, 64] = data<63:0>;
 X[t2, 64] = data<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2122
ID032224 Non-Confidential

C6.2.203 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.

• LDSMAX has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMAX, STSMAXL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDSMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2123
ID032224 Non-Confidential

64-bit LDSMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMAX, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STSMAX, STSMAXL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2124
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2125
ID032224 Non-Confidential

C6.2.204 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.

• LDSMAXLB and LDSMAXALB store to memory with release semantics.

• LDSMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMAXB, STSMAXLB. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDSMAXAB variant

Applies when A == 1 && R == 0.

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALB variant

Applies when A == 1 && R == 1.

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXB variant

Applies when A == 0 && R == 0.

LDSMAXB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLB variant

Applies when A == 0 && R == 1.

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2126
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMAX, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMAXB, STSMAXLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2127
ID032224 Non-Confidential

C6.2.205 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.

• LDSMAXLH and LDSMAXALH store to memory with release semantics.

• LDSMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMAXH, STSMAXLH. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDSMAXAH variant

Applies when A == 1 && R == 0.

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALH variant

Applies when A == 1 && R == 1.

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXH variant

Applies when A == 0 && R == 0.

LDSMAXH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLH variant

Applies when A == 0 && R == 1.

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2128
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMAX, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMAXH, STSMAXLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2129
ID032224 Non-Confidential

C6.2.206 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.

• LDSMIN has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMIN, STSMINL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDSMIN variant

Applies when size == 10 && A == 0 && R == 0.

LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMIN variant

Applies when size == 11 && A == 0 && R == 0.

LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMINA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2130
ID032224 Non-Confidential

64-bit LDSMINAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMIN, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STSMIN, STSMINL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2131
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2132
ID032224 Non-Confidential

C6.2.207 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.

• LDSMINLB and LDSMINALB store to memory with release semantics.

• LDSMINB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMINB, STSMINLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSMINAB variant

Applies when A == 1 && R == 0.

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

LDSMINALB variant

Applies when A == 1 && R == 1.

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

LDSMINB variant

Applies when A == 0 && R == 0.

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

LDSMINLB variant

Applies when A == 0 && R == 1.

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2133
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMIN, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMINB, STSMINLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2134
ID032224 Non-Confidential

C6.2.208 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.

• LDSMINLH and LDSMINALH store to memory with release semantics.

• LDSMINH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMINH, STSMINLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSMINAH variant

Applies when A == 1 && R == 0.

LDSMINAH <Ws>, <Wt>, [<Xn|SP>]

LDSMINALH variant

Applies when A == 1 && R == 1.

LDSMINALH <Ws>, <Wt>, [<Xn|SP>]

LDSMINH variant

Applies when A == 0 && R == 0.

LDSMINH <Ws>, <Wt>, [<Xn|SP>]

LDSMINLH variant

Applies when A == 0 && R == 1.

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2135
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMIN, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMINH, STSMINLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2136
ID032224 Non-Confidential

C6.2.209 LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that
is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

1 x 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2137
ID032224 Non-Confidential

Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2138
ID032224 Non-Confidential

C6.2.210 LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 0 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2139
ID032224 Non-Confidential

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2140
ID032224 Non-Confidential

C6.2.211 LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

LDTRH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 1 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2141
ID032224 Non-Confidential

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2142
ID032224 Non-Confidential

C6.2.212 LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes
the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDTRSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else

0 0 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2143
ID032224 Non-Confidential

 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2144
ID032224 Non-Confidential

C6.2.213 LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;

0 1 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2145
ID032224 Non-Confidential

 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2146
ID032224 Non-Confidential

C6.2.214 LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the
result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

1 0 1 1 1 0 0 0 1 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2147
ID032224 Non-Confidential

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2148
ID032224 Non-Confidential

C6.2.215 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.

• LDUMAX has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMAX, STUMAXL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDUMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2149
ID032224 Non-Confidential

64-bit LDUMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMAX, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STUMAX, STUMAXL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2150
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2151
ID032224 Non-Confidential

C6.2.216 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.

• LDUMAXLB and LDUMAXALB store to memory with release semantics.

• LDUMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMAXB, STUMAXLB. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDUMAXAB variant

Applies when A == 1 && R == 0.

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALB variant

Applies when A == 1 && R == 1.

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXB variant

Applies when A == 0 && R == 0.

LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLB variant

Applies when A == 0 && R == 1.

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2152
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMAX, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMAXB, STUMAXLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2153
ID032224 Non-Confidential

C6.2.217 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.

• LDUMAXLH and LDUMAXALH store to memory with release semantics.

• LDUMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMAXH, STUMAXLH. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDUMAXAH variant

Applies when A == 1 && R == 0.

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALH variant

Applies when A == 1 && R == 1.

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXH variant

Applies when A == 0 && R == 0.

LDUMAXH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLH variant

Applies when A == 0 && R == 1.

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2154
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMAX, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMAXH, STUMAXLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2155
ID032224 Non-Confidential

C6.2.218 LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.

• LDUMIN has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMIN, STUMINL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDUMIN variant

Applies when size == 10 && A == 0 && R == 0.

LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINA variant

Applies when size == 10 && A == 1 && R == 0.

LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINAL variant

Applies when size == 10 && A == 1 && R == 1.

LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINL variant

Applies when size == 10 && A == 0 && R == 1.

LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMIN variant

Applies when size == 11 && A == 0 && R == 0.

LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINA variant

Applies when size == 11 && A == 1 && R == 0.

LDUMINA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2156
ID032224 Non-Confidential

64-bit LDUMINAL variant

Applies when size == 11 && A == 1 && R == 1.

LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINL variant

Applies when size == 11 && A == 0 && R == 1.

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMIN, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STUMIN, STUMINL A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2157
ID032224 Non-Confidential

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2158
ID032224 Non-Confidential

C6.2.219 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.

• LDUMINLB and LDUMINALB store to memory with release semantics.

• LDUMINB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMINB, STUMINLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDUMINAB variant

Applies when A == 1 && R == 0.

LDUMINAB <Ws>, <Wt>, [<Xn|SP>]

LDUMINALB variant

Applies when A == 1 && R == 1.

LDUMINALB <Ws>, <Wt>, [<Xn|SP>]

LDUMINB variant

Applies when A == 0 && R == 0.

LDUMINB <Ws>, <Wt>, [<Xn|SP>]

LDUMINLB variant

Applies when A == 0 && R == 1.

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2159
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMIN, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMINB, STUMINLB A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2160
ID032224 Non-Confidential

C6.2.220 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.

• LDUMINLH and LDUMINALH store to memory with release semantics.

• LDUMINH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMINH, STUMINLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDUMINAH variant

Applies when A == 1 && R == 0.

LDUMINAH <Ws>, <Wt>, [<Xn|SP>]

LDUMINALH variant

Applies when A == 1 && R == 1.

LDUMINALH <Ws>, <Wt>, [<Xn|SP>]

LDUMINH variant

Applies when A == 0 && R == 0.

LDUMINH <Ws>, <Wt>, [<Xn|SP>]

LDUMINLH variant

Applies when A == 0 && R == 1.

LDUMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2161
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMIN, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMINH, STUMINLH A == '0' && Rt == '11111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2162
ID032224 Non-Confidential

C6.2.221 LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or
64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();

1 x 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2163
ID032224 Non-Confidential

 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2164
ID032224 Non-Confidential

C6.2.222 LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from
memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/store
addressing modes.

Encoding

LDURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2165
ID032224 Non-Confidential

C6.2.223 LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Encoding

LDURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2166
ID032224 Non-Confidential

C6.2.224 LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

0 0 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2167
ID032224 Non-Confidential

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2168
ID032224 Non-Confidential

C6.2.225 LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads
a signed halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses,
see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

0 1 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2169
ID032224 Non-Confidential

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2170
ID032224 Non-Confidential

C6.2.226 LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a
signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Encoding

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 0 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2171
ID032224 Non-Confidential

C6.2.227 LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. For information on single-copy atomicity and
alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The PE marks
the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when sz == 0.

LDXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

LDXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDXP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L Rs o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2172
ID032224 Non-Confidential

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t, datasize] = bits(datasize) UNKNOWN; // In this case t = t2
 elsif elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 X[t, datasize-elsize] = data<datasize-1:elsize>;
 X[t2, elsize] = data<elsize-1:0>;
 else
 X[t, elsize] = data<elsize-1:0>;
 X[t2, datasize-elsize] = data<datasize-1:elsize>;
 else // elsize == 64
 // 64-bit load exclusive pair (not atomic), but must be 128-bit aligned
 if !IsAligned(address, dbytes) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 bits(64) address2 = GenerateAddress(address, 8, accdesc);
 X[t, 64] = Mem[address, 8, accdesc];
 X[t2, 64] = Mem[address2, 8, accdesc];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2173
ID032224 Non-Confidential

C6.2.228 LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword
from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2174
ID032224 Non-Confidential

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2175
ID032224 Non-Confidential

C6.2.229 LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an
exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses, see Load/store addressing modes.

Encoding

LDXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 1);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2176
ID032224 Non-Confidential

C6.2.230 LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses, see Load/store addressing modes.

Encoding

LDXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 2);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2177
ID032224 Non-Confidential

C6.2.231 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms != 011111.

LSL <Wd>, <Wn>, #<shift>

 is equivalent to

UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)

and is the preferred disassembly when imms + 1 == immr.

64-bit variant

Applies when sf == 1 && N == 1 && imms != 111111.

LSL <Xd>, <Xn>, #<shift>

 is equivalent to

UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)

and is the preferred disassembly when imms + 1 == immr.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31.

For the 64-bit variant: is the shift amount, in the range 0 to 63.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2178
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2179
ID032224 Non-Confidential

C6.2.232 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is an alias of the LSLV instruction. This means that:

• The encodings in this description are named to match the encodings of LSLV.

• The description of LSLV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

LSL <Wd>, <Wn>, <Wm>

 is equivalent to

LSLV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

LSL <Xd>, <Xn>, <Xm>

 is equivalent to

LSLV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSLV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2180
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2181
ID032224 Non-Confidential

C6.2.233 LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is used by the alias LSL (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSLV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSLV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2182
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2183
ID032224 Non-Confidential

C6.2.234 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 011111.

LSR <Wd>, <Wn>, #<shift>

 is equivalent to

UBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1 && imms == 111111.

LSR <Xd>, <Xn>, #<shift>

 is equivalent to

UBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2184
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2185
ID032224 Non-Confidential

C6.2.235 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the LSRV instruction. This means that:

• The encodings in this description are named to match the encodings of LSRV.

• The description of LSRV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

LSR <Wd>, <Wn>, <Wm>

 is equivalent to

LSRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

LSR <Xd>, <Xn>, <Xm>

 is equivalent to

LSRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSRV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2186
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2187
ID032224 Non-Confidential

C6.2.236 LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias LSR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2188
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2189
ID032224 Non-Confidential

C6.2.237 MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination
register.

This instruction is used by the alias MUL. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

MADD <Wd>, <Wn>, <Wm>, <Wa>

64-bit variant

Applies when sf == 1.

MADD <Xd>, <Xn>, <Xm>, <Xa>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);
 constant integer destsize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Alias is preferred when

MUL Ra == '11111'

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2190
ID032224 Non-Confidential

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(destsize) operand1 = X[n, destsize];
 bits(destsize) operand2 = X[m, destsize];
 bits(destsize) operand3 = X[a, destsize];

 integer result;

 result = UInt(operand3) + (UInt(operand1) * UInt(operand2));

 X[d, destsize] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2191
ID032224 Non-Confidential

C6.2.238 MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This instruction is an alias of the MSUB instruction. This means that:

• The encodings in this description are named to match the encodings of MSUB.

• The description of MSUB gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MNEG <Wd>, <Wn>, <Wm>

 is equivalent to

MSUB <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MNEG <Xd>, <Xn>, <Xm>

 is equivalent to

MSUB <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0 Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2192
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2193
ID032224 Non-Confidential

C6.2.239 MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.

This instruction is an alias of the ORR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (immediate).

• The description of ORR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

MOV <Wd|WSP>, #<imm>

 is equivalent to

ORR <Wd|WSP>, WZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

64-bit variant

Applies when sf == 1.

MOV <Xd|SP>, #<imm>

 is equivalent to

ORR <Xd|SP>, XZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values
which could be encoded by MOVZ or MOVN.

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values
which could be encoded by MOVZ or MOVN.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 0 0 N immr imms 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2194
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2195
ID032224 Non-Confidential

C6.2.240 MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This instruction is an alias of the MOVN instruction. This means that:

• The encodings in this description are named to match the encodings of MOVN.

• The description of MOVN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>

 is equivalent to

MOVN <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16).

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

 is equivalent to

MOVN <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw", but excluding 0xffff0000 and 0x0000ffff

For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVN gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2196
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2197
ID032224 Non-Confidential

C6.2.241 MOV (register)

Move (register) copies the value in a source register to the destination register.

This instruction is an alias of the ORR (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (shifted register).

• The description of ORR (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd>, <Wm>

 is equivalent to

ORR <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MOV <Xd>, <Xm>

 is equivalent to

ORR <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 1 0 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc shift N imm6 Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2198
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2199
ID032224 Non-Confidential

C6.2.242 MOV (to/from SP)

Move between register and stack pointer : Rd = Rn

This instruction is an alias of the ADD (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ADD (immediate).

• The description of ADD (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd|WSP>, <Wn|WSP>

 is equivalent to

ADD <Wd|WSP>, <Wn|WSP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

64-bit variant

Applies when sf == 1.

MOV <Xd|SP>, <Xn|SP>

 is equivalent to

ADD <Xd|SP>, <Xn|SP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

Operation

The description of ADD (immediate) gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S sh imm12

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2200
ID032224 Non-Confidential

C6.2.243 MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This instruction is an alias of the MOVZ instruction. This means that:

• The encodings in this description are named to match the encodings of MOVZ.

• The description of MOVZ gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>

 is equivalent to

MOVZ <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

 is equivalent to

MOVZ <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".

For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVZ gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2201
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2202
ID032224 Non-Confidential

C6.2.244 MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits
unchanged.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVK <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVK <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 if sf == '0' && hw<1> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 constant integer datasize = 32 << UInt(sf);
 constant integer pos = UInt(hw:'0000');

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = X[d, datasize];
 result<pos+15:pos> = imm16;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2203
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2204
ID032224 Non-Confidential

C6.2.245 MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate). See Alias conditions for details of when each
alias is preferred.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVN <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVN <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 if sf == '0' && hw<1> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 constant integer datasize = 32 << UInt(sf);
 constant integer pos = UInt(hw:'0000');

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = Zeros(datasize);

Alias of variant is preferred when

MOV (inverted wide immediate) 64-bit ! (IsZero(imm16) && hw != '00')

MOV (inverted wide immediate) 32-bit ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16)

sf 0 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2205
ID032224 Non-Confidential

 result<pos+15:pos> = imm16;
 result = NOT(result);
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2206
ID032224 Non-Confidential

C6.2.246 MOVZ

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVZ <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVZ <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 if sf == '0' && hw<1> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 constant integer datasize = 32 << UInt(sf);
 constant integer pos = UInt(hw:'0000');

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = Zeros(datasize);

Alias is preferred when

MOV (wide immediate) ! (IsZero(imm16) && hw != '00')

sf 1 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2207
ID032224 Non-Confidential

 result<pos+15:pos> = imm16;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2208
ID032224 Non-Confidential

C6.2.247 MRS

Move System Register to general-purpose register allows the PE to read an AArch64 System register into a
general-purpose register.

Encoding

MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

Decode for this encoding

 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in Chapter D23 AArch64 System Register Descriptions.

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t);

1 1 0 1 0 1 0 1 0 0 1 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2209
ID032224 Non-Confidential

C6.2.248 MRRS

Move System Register to two adjacent general-purpose registers allows the PE to read an AArch64 128-bit System
register into two adjacent 64-bit general-purpose registers.

System

(FEAT_SYSREG128)

Encoding

MRRS <Xt>, <Xt+1>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SYSREG128) then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);
 integer t2 = UInt(Rt + 1);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose destination register, encoded in the "Rt" field.

<Xt+1> Is the 64-bit name of the second general-purpose destination register, encoded as "Rt" +1.

<systemreg> Is a System register name, encoded in "o0:op1:CRn:CRm:op2".

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 AArch64.SysRegRead128(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t, t2);

1 1 0 1 0 1 0 1 0 1 1 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2210
ID032224 Non-Confidential

C6.2.249 MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see PSTATE.

The bits that can be written by this instruction are:

• PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.

• If FEAT_SSBS is implemented, PSTATE.SSBS.

• If FEAT_PAN is implemented, PSTATE.PAN.

• If FEAT_UAO is implemented, PSTATE.UAO.

• If FEAT_DIT is implemented, PSTATE.DIT.

• If FEAT_MTE is implemented, PSTATE.TCO.

• If FEAT_NMI is implemented, PSTATE.ALLINT.

• If FEAT_SME is implemented, PSTATE.SM and PSTATE.ZA.

• If FEAT_EBEP is implemented, PSTATE.PM.

This instruction is used by the aliases SMSTART and SMSTOP. See Alias conditions for details of when each alias
is preferred.

Encoding

MSR <pstatefield>, #<imm>

Decode for this encoding

 if op1 == '000' && op2 == '000' then SEE "CFINV";
 if op1 == '000' && op2 == '001' then SEE "XAFLAG";
 if op1 == '000' && op2 == '010' then SEE "AXFLAG";

 AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');
 bits(2) min_EL;
 boolean need_secure = FALSE;

 case op1 of
 when '00x'
 min_EL = EL1;
 when '010'
 min_EL = EL1;
 when '011'
 min_EL = EL0;
 when '100'
 min_EL = EL2;
 when '101'
 if !IsFeatureImplemented(FEAT_VHE) then
 UNDEFINED;
 min_EL = EL2;
 when '110'
 min_EL = EL3;
 when '111'
 min_EL = EL1;

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2211
ID032224 Non-Confidential

 need_secure = TRUE;

 if (UInt(PSTATE.EL) < UInt(min_EL) || (need_secure && CurrentSecurityState() != SS_Secure)) then
 UNDEFINED;

 PSTATEField field;
 case op1:op2 of
 when '000 011'
 if !IsFeatureImplemented(FEAT_UAO) then UNDEFINED;
 field = PSTATEField_UAO;
 when '000 100'
 if !IsFeatureImplemented(FEAT_PAN) then UNDEFINED;
 field = PSTATEField_PAN;
 when '000 101' field = PSTATEField_SP;
 when '001 000'
 case CRm of
 when '000x'
 if !IsFeatureImplemented(FEAT_NMI) then UNDEFINED;
 field = PSTATEField_ALLINT;
 when '001x'
 if !IsFeatureImplemented(FEAT_EBEP) then UNDEFINED;
 field = PSTATEField_PM;
 otherwise
 UNDEFINED;
 when '011 010'
 if !IsFeatureImplemented(FEAT_DIT) then UNDEFINED;
 field = PSTATEField_DIT;
 when '011 011'
 case CRm of
 when '001x'
 if !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
 field = PSTATEField_SVCRSM;
 when '010x'
 if !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
 field = PSTATEField_SVCRZA;
 when '011x'
 if !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
 field = PSTATEField_SVCRSMZA;
 otherwise
 UNDEFINED;
 when '011 100'
 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 field = PSTATEField_TCO;
 when '011 110' field = PSTATEField_DAIFSet;
 when '011 111' field = PSTATEField_DAIFClr;
 when '011 001'
 if !IsFeatureImplemented(FEAT_SSBS) then UNDEFINED;
 field = PSTATEField_SSBS;
 otherwise UNDEFINED;

Alias conditions

Assembler symbols

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in the "op1:op2:CRm" field. It
can have the following values:

SPSel when op1 = 000, op2 = 101, CRm = xxxx

Alias is preferred when

SMSTART op1 == '011' && CRm == '0xx1' && op2 == '011'

SMSTOP op1 == '011' && CRm == '0xx0' && op2 == '011'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2212
ID032224 Non-Confidential

DAIFSet when op1 = 011, op2 = 110, CRm = xxxx

DAIFClr when op1 = 011, op2 = 111, CRm = xxxx

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011, CRm = xxxx

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100, CRm = xxxx

When FEAT_NMI is implemented, the following value is also valid:

ALLINT when op1 = 001, op2 = 000, CRm = 000x

When FEAT_EBEP is implemented, the following value is also valid:

PM when op1 = 001, op2 = 000, CRm = 001x

When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001, CRm = xxxx

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010, CRm = xxxx

When FEAT_SME is implemented, the following values are also valid:

SVCRSM when op1 = 011, op2 = 011, CRm = 001x

SVCRZA when op1 = 011, op2 = 011, CRm = 010x

SVCRSMZA when op1 = 011, op2 = 011, CRm = 011x

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100, CRm = xxxx

See PSTATE when op1 = 000, op2 = 00x, CRm = xxxx.

See PSTATE when op1 = 000, op2 = 010, CRm = xxxx.

The following encodings are reserved:

• op1 = 000, op2 = 11x, CRm = xxxx.

• op1 = 001, op2 = 000, CRm = 01xx.

• op1 = 001, op2 = 000, CRm = 1xxx.

• op1 = 001, op2 = 001, CRm = xxxx.

• op1 = 001, op2 = 01x, CRm = xxxx.

• op1 = 001, op2 = 1xx, CRm = xxxx.

• op1 = 010, op2 = xxx, CRm = xxxx.

• op1 = 011, op2 = 000, CRm = xxxx.

• op1 = 011, op2 = 011, CRm = 000x.

• op1 = 011, op2 = 011, CRm = 1xxx.

• op1 = 011, op2 = 101, CRm = xxxx.

• op1 = 1xx, op2 = xxx, CRm = xxxx.

 For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01 specifies
SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field. Restricted to the
range 0 to 1, encoded in "CRm<0>", when <pstatefield> is ALLINT, PM, SVCRSM, SVCRSMZA,
or SVCRZA.

Operation

 case field of
 when PSTATEField_SSBS
 PSTATE.SSBS = CRm<0>;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2213
ID032224 Non-Confidential

 when PSTATEField_SP
 PSTATE.SP = CRm<0>;
 when PSTATEField_DAIFSet
 AArch64.CheckDAIFAccess(PSTATEField_DAIFSet);
 PSTATE.D = PSTATE.D OR CRm<3>;
 PSTATE.A = PSTATE.A OR CRm<2>;
 PSTATE.I = PSTATE.I OR CRm<1>;
 PSTATE.F = PSTATE.F OR CRm<0>;
 when PSTATEField_DAIFClr
 AArch64.CheckDAIFAccess(PSTATEField_DAIFClr);
 PSTATE.D = PSTATE.D AND NOT(CRm<3>);
 PSTATE.A = PSTATE.A AND NOT(CRm<2>);
 PSTATE.I = PSTATE.I AND NOT(CRm<1>);
 PSTATE.F = PSTATE.F AND NOT(CRm<0>);
 when PSTATEField_PAN
 PSTATE.PAN = CRm<0>;
 when PSTATEField_UAO
 PSTATE.UAO = CRm<0>;
 when PSTATEField_DIT
 PSTATE.DIT = CRm<0>;
 when PSTATEField_TCO
 PSTATE.TCO = CRm<0>;
 when PSTATEField_ALLINT
 if (PSTATE.EL == EL1 && IsHCRXEL2Enabled() && HCRX_EL2.TALLINT == '1' && CRm<0> == '1') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 PSTATE.ALLINT = CRm<0>;
 when PSTATEField_SVCRSM
 CheckSMEAccess();
 SetPSTATE_SM(CRm<0>);
 when PSTATEField_SVCRZA
 CheckSMEAccess();
 SetPSTATE_ZA(CRm<0>);
 when PSTATEField_SVCRSMZA
 CheckSMEAccess();
 SetPSTATE_SM(CRm<0>);
 SetPSTATE_ZA(CRm<0>);
 when PSTATEField_PM
 PSTATE.PM = CRm<0>;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2214
ID032224 Non-Confidential

C6.2.250 MSR (register)

Move general-purpose register to System Register allows the PE to write an AArch64 System register from a
general-purpose register.

Encoding

MSR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>

Decode for this encoding

 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in Chapter D23 AArch64 System Register Descriptions.

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

 AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t);

1 1 0 1 0 1 0 1 0 0 0 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2215
ID032224 Non-Confidential

C6.2.251 MSRR

Move two adjacent general-purpose registers to System Register allows the PE to write an AArch64 128-bit System
register from two adjacent 64-bit general-purpose registers.

System

(FEAT_SYSREG128)

Encoding

MSRR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>, <Xt+1>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SYSREG128) then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);
 integer t2 = UInt(Rt + 1);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<systemreg> Is a System register name, encoded in "o0:op1:CRn:CRm:op2".

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the first general-purpose source register, encoded in the "Rt" field.

<Xt+1> Is the 64-bit name of the second general-purpose source register, encoded as "Rt" +1.

Operation

 AArch64.SysRegWrite128(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t, t2);

1 1 0 1 0 1 0 1 0 1 0 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2216
ID032224 Non-Confidential

C6.2.252 MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the
result to the destination register.

This instruction is used by the alias MNEG. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

MSUB <Wd>, <Wn>, <Wm>, <Wa>

64-bit variant

Applies when sf == 1.

MSUB <Xd>, <Xn>, <Xm>, <Xa>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);
 constant integer destsize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Alias is preferred when

MNEG Ra == '11111'

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2217
ID032224 Non-Confidential

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(destsize) operand1 = X[n, destsize];
 bits(destsize) operand2 = X[m, destsize];
 bits(destsize) operand3 = X[a, destsize];

 integer result;

 result = UInt(operand3) - (UInt(operand1) * UInt(operand2));
 X[d, destsize] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2218
ID032224 Non-Confidential

C6.2.253 MUL

Multiply : Rd = Rn * Rm

This instruction is an alias of the MADD instruction. This means that:

• The encodings in this description are named to match the encodings of MADD.

• The description of MADD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MUL <Wd>, <Wn>, <Wm>

 is equivalent to

MADD <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MUL <Xd>, <Xn>, <Xm>

 is equivalent to

MADD <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0 Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2219
ID032224 Non-Confidential

C6.2.254 MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This instruction is an alias of the ORN (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORN (shifted register).

• The description of ORN (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MVN <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

ORN <Wd>, WZR, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MVN <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

ORN <Xd>, XZR, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2220
ID032224 Non-Confidential

Operation

The description of ORN (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2221
ID032224 Non-Confidential

C6.2.255 NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This instruction is an alias of the SUB (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUB (shifted register).

• The description of SUB (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NEG <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUB <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NEG <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUB <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2222
ID032224 Non-Confidential

Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2223
ID032224 Non-Confidential

C6.2.256 NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It
updates the condition flags based on the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (shifted register).

• The description of SUBS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NEGS <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NEGS <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 !=11111

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rn Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2224
ID032224 Non-Confidential

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2225
ID032224 Non-Confidential

C6.2.257 NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to
the destination register.

This instruction is an alias of the SBC instruction. This means that:

• The encodings in this description are named to match the encodings of SBC.

• The description of SBC gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NGC <Wd>, <Wm>

 is equivalent to

SBC <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NGC <Xd>, <Xm>

 is equivalent to

SBC <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2226
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2227
ID032224 Non-Confidential

C6.2.258 NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is an alias of the SBCS instruction. This means that:

• The encodings in this description are named to match the encodings of SBCS.

• The description of SBCS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NGCS <Wd>, <Wm>

 is equivalent to

SBCS <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NGCS <Xd>, <Xm>

 is equivalent to

SBCS <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBCS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S Rn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2228
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2229
ID032224 Non-Confidential

C6.2.259 NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used
for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

Encoding

NOP

Decode for this encoding

 // Empty.

Operation

 return; // do nothing

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2230
ID032224 Non-Confidential

C6.2.260 ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MVN. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

ORN <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ORN <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

Alias is preferred when

MVN Rn == '11111'

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2231
ID032224 Non-Confidential

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 OR operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2232
ID032224 Non-Confidential

C6.2.261 ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and
writes the result to the destination register.

This instruction is used by the alias MOV (bitmask immediate). See Alias conditions for details of when each alias
is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

ORR <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

ORR <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Alias conditions

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias is preferred when

MOV (bitmask immediate) Rn == '11111' && ! MoveWidePreferred(sf, N, imms, immr)

sf 0 1 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2233
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 OR imm;
 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2234
ID032224 Non-Confidential

C6.2.262 ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.

This instruction is used by the alias MOV (register). See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

ORR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ORR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

Alias is preferred when

MOV (register) shift == '00' && imm6 == '000000' && Rn == '11111'

sf 0 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2235
ID032224 Non-Confidential

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 OR operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2236
ID032224 Non-Confidential

C6.2.263 PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.

• The value zero, for PACDZA.

Integer

(FEAT_PAuth)

PACDA variant

Applies when Z == 0.

PACDA <Xd>, <Xn|SP>

PACDZA variant

Applies when Z == 1 && Rn == 11111.

PACDZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACDA
 if n == 31 then source_is_sp = TRUE;
 else // PACDZA
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if source_is_sp then
 X[d, 64] = AddPACDA(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACDA(X[d, 64], X[n, 64]);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2237
ID032224 Non-Confidential

C6.2.264 PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.

• The value zero, for PACDZB.

Integer

(FEAT_PAuth)

PACDB variant

Applies when Z == 0.

PACDB <Xd>, <Xn|SP>

PACDZB variant

Applies when Z == 1 && Rn == 11111.

PACDZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACDB
 if n == 31 then source_is_sp = TRUE;
 else // PACDZB
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if source_is_sp then
 X[d, 64] = AddPACDB(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACDB(X[d, 64], X[n, 64]);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2238
ID032224 Non-Confidential

C6.2.265 PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for a
64-bit value in the first source register, using a modifier in the second source register, and the Generic key. The
computed pointer authentication code is written to the most significant 32 bits of the destination register, and the
least significant 32 bits of the destination register are set to zero.

Integer

(FEAT_PAuth)

Encoding

PACGA <Xd>, <Xn>, <Xm|SP>

Decode for this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if m == 31 then source_is_sp = TRUE;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Rm" field.

Operation

 if source_is_sp then
 X[d, 64] = AddPACGA(X[n, 64], SP[]);
 else
 X[d, 64] = AddPACGA(X[n, 64], X[m, 64]);

1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2239
ID032224 Non-Confidential

C6.2.266 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIA and PACIZA.

• In X17, for PACIA1716.

• In X30, for PACIASP and PACIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIA.

• The value zero, for PACIZA and PACIAZ.

• In X16, for PACIA1716.

• In SP, for PACIASP.

A PACIASP instruction has an implicit BTI instruction. The implicit BTI instruction of a PACIASP instruction is always
compatible with PSTATE.BTYPE == 0b01 and PSTATE.BTYPE == 0b10. Controls in SCTLR_ELx configure
whether the implicit BTI instruction of a PACIASP instruction is compatible with PSTATE.BTYPE == 0b11. For more
information, see PSTATE.BTYPE.

Integer

(FEAT_PAuth)

PACIA variant

Applies when Z == 0.

PACIA <Xd>, <Xn|SP>

PACIZA variant

Applies when Z == 1 && Rn == 11111.

PACIZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACIA
 if n == 31 then source_is_sp = TRUE;
 else // PACIZA
 if n != 31 then UNDEFINED;

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2240
ID032224 Non-Confidential

System

(FEAT_PAuth)

PACIA1716 variant

Applies when CRm == 0001 && op2 == 000.

PACIA1716

PACIASP variant

Applies when CRm == 0011 && op2 == 001.

PACIASP

PACIAZ variant

Applies when CRm == 0011 && op2 == 000.

PACIAZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 000' // PACIAZ
 d = 30;
 n = 31;
 when '0011 001' // PACIASP
 d = 30;
 source_is_sp = TRUE;
 if IsFeatureImplemented(FEAT_BTI) then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIASP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());
 when '0001 000' // PACIA1716
 d = 17;
 n = 16;
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 0 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2241
ID032224 Non-Confidential

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AddPACIA(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACIA(X[d, 64], X[n, 64]);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2242
ID032224 Non-Confidential

C6.2.267 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key B.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.

• In X17, for PACIB1716.

• In X30, for PACIBSP and PACIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.

• The value zero, for PACIZB and PACIBZ.

• In X16, for PACIB1716.

• In SP, for PACIBSP.

A PACIBSP instruction has an implicit BTI instruction. The implicit BTI instruction of a PACIBSP instruction is always
compatible with PSTATE.BTYPE == 0b01 and PSTATE.BTYPE == 0b10. Controls in SCTLR_ELx configure
whether the implicit BTI instruction of a PACIBSP instruction is compatible with PSTATE.BTYPE == 0b11. For more
information, see PSTATE.BTYPE.

Integer

(FEAT_PAuth)

PACIB variant

Applies when Z == 0.

PACIB <Xd>, <Xn|SP>

PACIZB variant

Applies when Z == 1 && Rn == 11111.

PACIZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACIB
 if n == 31 then source_is_sp = TRUE;
 else // PACIZB
 if n != 31 then UNDEFINED;

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2243
ID032224 Non-Confidential

System

(FEAT_PAuth)

PACIB1716 variant

Applies when CRm == 0001 && op2 == 010.

PACIB1716

PACIBSP variant

Applies when CRm == 0011 && op2 == 011.

PACIBSP

PACIBZ variant

Applies when CRm == 0011 && op2 == 010.

PACIBZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 010' // PACIBZ
 d = 30;
 n = 31;
 when '0011 011' // PACIBSP
 d = 30;
 source_is_sp = TRUE;
 if IsFeatureImplemented(FEAT_BTI) then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIBSP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());
 when '0001 010' // PACIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 1 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2244
ID032224 Non-Confidential

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AddPACIB(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACIB(X[d, 64], X[n, 64]);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2245
ID032224 Non-Confidential

C6.2.268 PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of a PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 bits(64) offset = LSL(ZeroExtend(imm12, 64), 3);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

SLC When FEAT_PRFMSLC is implemented, system level cache, encoded in the "Rt<2:1>"
field as 0b11.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to
0 and encoded in the "imm12" field as <pimm>/8.

1 1 1 1 1 0 0 1 1 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2246
ID032224 Non-Confidential

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 bits(64) address;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_PREFETCH, FALSE, privileged, FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 Prefetch(address, t<4:0>);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2247
ID032224 Non-Confidential

C6.2.269 PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely
to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one
or more caches.

The effect of a PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFM (<prfop>|#<imm5>), <label>

Decode for this encoding

 integer t = UInt(Rt);

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

SLC When FEAT_PRFMSLC is implemented, system level cache, encoded in the "Rt<2:1>"
field as 0b11.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

1 1 0 1 1 0 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2248
ID032224 Non-Confidential

Operation

 bits(64) address = PC64 + offset;

 Prefetch(address, t<4:0>);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2249
ID032224 Non-Confidential

C6.2.270 PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of a PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 3 else 0;

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

SLC When FEAT_PRFMSLC is implemented, system level cache, encoded in the "Rt<2:1>"
field as 0b11.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

1 1 1 1 1 0 0 0 1 0 1 Rm x 1 x S 1 0 Rn !=11xxx

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc option Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2250
ID032224 Non-Confidential

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_PREFETCH, FALSE, privileged, FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 Prefetch(address, t<4:0>);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2251
ID032224 Non-Confidential

C6.2.271 PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address
are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of a PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

1 1 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2252
ID032224 Non-Confidential

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 bits(64) address;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_PREFETCH, FALSE, privileged, FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 Prefetch(address, t<4:0>);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2253
ID032224 Non-Confidential

C6.2.272 PSB

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the
current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the
profiling buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer
have completed.

If FEAT_SPE is not implemented, this instruction executes as a NOP.

System

(FEAT_SPE)

Encoding

PSB CSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SPE) then EndOfInstruction();

Operation

 ProfilingSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2254
ID032224 Non-Confidential

C6.2.273 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing
earlier stores to the same physical address under certain conditions. For more information and details of the
semantics, see Physical Speculative Store Bypass Barrier (PSSBB).

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

PSSBB

 is equivalent to

DSB #4

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2255
ID032224 Non-Confidential

C6.2.274 RBIT

Reverse Bits reverses the bit order in a register.

32-bit variant

Applies when sf == 0.

RBIT <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

RBIT <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 for i = 0 to datasize-1
 result<(datasize-1)-i> = operand<i>;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2256
ID032224 Non-Confidential

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2257
ID032224 Non-Confidential

C6.2.275 RCWCAS, RCWCASA, RCWCASL, RCWCASAL

Read Check Write Compare and Swap doubleword in memory reads a 64-bit doubleword from memory, and
compares it against the value held in a register. If the comparison is equal, the value in a second register is
conditionally written to memory. Storing back to memory is conditional on RCW Checks. If the write is performed,
the read and the write occur atomically such that no other modification of the memory location can take place
between the read and the write. This instruction updates the condition flags based on the result of the update of
memory.

• RCWCASA and RCWCASAL load from memory with acquire semantics.

• RCWCASL and RCWCASAL store to memory with release semantics.

• RCWCAS has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWCAS variant

Applies when A == 0 && R == 0.

RCWCAS <Xs>, <Xt>, [<Xn|SP>]

RCWCASA variant

Applies when A == 1 && R == 0.

RCWCASA <Xs>, <Xt>, [<Xn|SP>]

RCWCASAL variant

Applies when A == 1 && R == 1.

RCWCASAL <Xs>, <Xt>, [<Xn|SP>]

RCWCASL variant

Applies when A == 0 && R == 1.

RCWCASL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

0 0 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2258
ID032224 Non-Confidential

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[t, 64];
 bits(64) compdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[s, 64] = readdata; // Return the old value when s!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2259
ID032224 Non-Confidential

C6.2.276 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL

Read Check Write Compare and Swap quadword in memory reads a 128-bit quadword from memory, and compares
it against the value held in a pair of registers. If the comparison is equal, the value in a second pair of registers is
conditionally written to memory. Storing back to memory is conditional on RCW Checks. If the write is performed,
the read and the write occur atomically such that no other modification of the memory location can take place
between the read and the write. This instruction updates the condition flags based on the result of the update of
memory.

• RCWCASPA and RCWCASPAL load from memory with acquire semantics.

• RCWCASPL and RCWCASPAL store to memory with release semantics.

• RCWCASP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWCASP variant

Applies when A == 0 && R == 0.

RCWCASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWCASPA variant

Applies when A == 1 && R == 0.

RCWCASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWCASPAL variant

Applies when A == 1 && R == 1.

RCWCASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWCASPL variant

Applies when A == 0 && R == 1.

RCWCASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2260
ID032224 Non-Confidential

Assembler symbols

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(128) newdata;
 bits(128) compdata;
 bits(128) readdata;
 bits(4) nzcv;

 bits(64) s1 = X[s, 64];
 bits(64) s2 = X[s+1, 64];
 bits(64) t1 = X[t, 64];
 bits(64) t2 = X[t+1, 64];

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, FALSE, acquire, release, tagchecked);

 compdata = if BigEndian(accdesc.acctype) then s1:s2 else s2:s1;
 newdata = if BigEndian(accdesc.acctype) then t1:t2 else t2:t1;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if BigEndian(accdesc.acctype) then
 X[s, 64] = readdata<127:64>;
 X[s+1, 64] = readdata<63:0>;
 else
 X[s, 64] = readdata<63:0>;
 X[s+1, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2261
ID032224 Non-Confidential

C6.2.277 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL

Read Check Write atomic bit Clear on doubleword in memory atomically loads a 64-bit doubleword from memory,
performs a bitwise AND with the complement of the value held in a register on it, and conditionally stores the result
back to memory. Storing of the result back to memory is conditional on RCW Checks. The value initially loaded
from memory is returned in the destination register. This instruction updates the condition flags based on the result
of the update of memory.

• RCWCLRA and RCWCLRAL load from memory with acquire semantics.

• RCWCLRL and RCWCLRAL store to memory with release semantics.

• RCWCLR has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWCLR variant

Applies when A == 0 && R == 0.

RCWCLR <Xs>, <Xt>, [<Xn|SP>]

RCWCLRA variant

Applies when A == 1 && R == 0.

RCWCLRA <Xs>, <Xt>, [<Xn|SP>]

RCWCLRAL variant

Applies when A == 1 && R == 1.

RCWCLRAL <Xs>, <Xt>, [<Xn|SP>]

RCWCLRL variant

Applies when A == 0 && R == 1.

RCWCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2262
ID032224 Non-Confidential

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2263
ID032224 Non-Confidential

C6.2.278 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL

Read Check Write atomic bit Clear on quadword in memory atomically loads a 128-bit quadword from memory,
performs a bitwise AND with the complement of the value held in a pair of registers on it, and conditionally stores
the result back to memory. Storing of the result back to memory is conditional on RCW Checks. The value initially
loaded from memory is returned in the same pair of registers. This instruction updates the condition flags based on
the result of the update of memory.

• RCWCLRPA and RCWCLRPAL load from memory with acquire semantics.

• RCWCLRPL and RCWCLRPAL store to memory with release semantics.

• RCWCLRP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWCLRP variant

Applies when A == 0 && R == 0.

RCWCLRP <Xt1>, <Xt2>, [<Xn|SP>]

RCWCLRPA variant

Applies when A == 1 && R == 0.

RCWCLRPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWCLRPAL variant

Applies when A == 1 && R == 1.

RCWCLRPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWCLRPL variant

Applies when A == 0 && R == 1.

RCWCLRPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2264
ID032224 Non-Confidential

 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2265
ID032224 Non-Confidential

C6.2.279 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL

Read Check Write Software Compare and Swap doubleword in memory reads a 64-bit doubleword from memory,
and compares it against the value held in a register. If the comparison is equal, the value in a second register is
conditionally written to memory. Storing back to memory is conditional on RCW Checks and RCWS Checks. If the
write is performed, the read and the write occur atomically such that no other modification of the memory location
can take place between the read and the write. This instruction updates the condition flags based on the result of the
update of memory.

• RCWSCASA and RCWSCASAL load from memory with acquire semantics.

• RCWSCASL and RCWSCASAL store to memory with release semantics.

• RCWSCAS has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSCAS variant

Applies when A == 0 && R == 0.

RCWSCAS <Xs>, <Xt>, [<Xn|SP>]

RCWSCASA variant

Applies when A == 1 && R == 0.

RCWSCASA <Xs>, <Xt>, [<Xn|SP>]

RCWSCASAL variant

Applies when A == 1 && R == 1.

RCWSCASAL <Xs>, <Xt>, [<Xn|SP>]

RCWSCASL variant

Applies when A == 0 && R == 1.

RCWSCASL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

0 1 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2266
ID032224 Non-Confidential

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[t, 64];
 bits(64) compdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[s, 64] = readdata; // Return the old value when s!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2267
ID032224 Non-Confidential

C6.2.280 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL

Read Check Write Software Compare and Swap quadword in memory reads a 128-bit quadword from memory, and
compares it against the value held in a pair of registers. If the comparison is equal, the value in a second pair of
registers is conditionally written to memory. Storing back to memory is conditional on RCW Checks and RCWS
Checks. If the write is performed, the read and the write occur atomically such that no other modification of the
memory location can take place between the read and the write. This instruction updates the condition flags based
on the result of the update of memory.

• RCWSCASPA and RCWSCASPAL load from memory with acquire semantics.

• RCWSCASPL and RCWSCASPAL store to memory with release semantics.

• RCWSCASP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSCASP variant

Applies when A == 0 && R == 0.

RCWSCASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWSCASPA variant

Applies when A == 1 && R == 0.

RCWSCASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWSCASPAL variant

Applies when A == 1 && R == 1.

RCWSCASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWSCASPL variant

Applies when A == 0 && R == 1.

RCWSCASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2268
ID032224 Non-Confidential

Assembler symbols

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(128) newdata;
 bits(128) compdata;
 bits(128) readdata;
 bits(4) nzcv;

 bits(64) s1 = X[s, 64];
 bits(64) s2 = X[s+1, 64];
 bits(64) t1 = X[t, 64];
 bits(64) t2 = X[t+1, 64];

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, TRUE, acquire, release, tagchecked);

 compdata = if BigEndian(accdesc.acctype) then s1:s2 else s2:s1;
 newdata = if BigEndian(accdesc.acctype) then t1:t2 else t2:t1;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if BigEndian(accdesc.acctype) then
 X[s, 64] = readdata<127:64>;
 X[s+1, 64] = readdata<63:0>;
 else
 X[s, 64] = readdata<63:0>;
 X[s+1, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2269
ID032224 Non-Confidential

C6.2.281 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL

Read Check Write Software atomic bit Clear on doubleword in memory atomically loads a 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and conditionally stores
the result back to memory. Storing of the result back to memory is conditional on RCW Checks and RCWS Checks.
The value initially loaded from memory is returned in the destination register. This instruction updates the condition
flags based on the result of the update of memory.

• RCWSCLRA and RCWSCLRAL load from memory with acquire semantics.

• RCWSCLRL and RCWSCLRAL store to memory with release semantics.

• RCWSCLR has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSCLR variant

Applies when A == 0 && R == 0.

RCWSCLR <Xs>, <Xt>, [<Xn|SP>]

RCWSCLRA variant

Applies when A == 1 && R == 0.

RCWSCLRA <Xs>, <Xt>, [<Xn|SP>]

RCWSCLRAL variant

Applies when A == 1 && R == 1.

RCWSCLRAL <Xs>, <Xt>, [<Xn|SP>]

RCWSCLRL variant

Applies when A == 0 && R == 1.

RCWSCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2270
ID032224 Non-Confidential

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2271
ID032224 Non-Confidential

C6.2.282 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL

Read Check Write Software atomic bit Clear on quadword in memory atomically loads a 128-bit quadword from
memory, performs a bitwise AND with the complement of the value held in a pair of registers on it, and
conditionally stores the result back to memory. Storing of the result back to memory is conditional on RCW Checks
and RCWS Checks. The value initially loaded from memory is returned in the same pair of registers. This
instruction updates the condition flags based on the result of the update of memory.

• RCWSCLRPA and RCWSCLRPAL load from memory with acquire semantics.

• RCWSCLRPL and RCWSCLRPAL store to memory with release semantics.

• RCWSCLRP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSCLRP variant

Applies when A == 0 && R == 0.

RCWSCLRP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSCLRPA variant

Applies when A == 1 && R == 0.

RCWSCLRPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSCLRPAL variant

Applies when A == 1 && R == 1.

RCWSCLRPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSCLRPL variant

Applies when A == 0 && R == 1.

RCWSCLRPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 1 0 1 1 0 0 1 A R 1 Rt2 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2272
ID032224 Non-Confidential

 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2273
ID032224 Non-Confidential

C6.2.283 RCWSET, RCWSETA, RCWSETL, RCWSETAL

Read Check Write atomic bit Set on doubleword in memory atomically loads a 64-bit doubleword from memory,
performs a bitwise OR with the complement of the value held in a register on it, and conditionally stores the result
back to memory. Storing of the result back to memory is conditional on RCW Checks. The value initially loaded
from memory is returned in the destination register. This instruction updates the condition flags based on the result
of the update of memory.

• RCWSETA and RCWSETAL load from memory with acquire semantics.

• RCWSETL and RCWSETAL store to memory with release semantics.

• RCWSET has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSET variant

Applies when A == 0 && R == 0.

RCWSET <Xs>, <Xt>, [<Xn|SP>]

RCWSETA variant

Applies when A == 1 && R == 0.

RCWSETA <Xs>, <Xt>, [<Xn|SP>]

RCWSETAL variant

Applies when A == 1 && R == 1.

RCWSETAL <Xs>, <Xt>, [<Xn|SP>]

RCWSETL variant

Applies when A == 0 && R == 1.

RCWSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2274
ID032224 Non-Confidential

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2275
ID032224 Non-Confidential

C6.2.284 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL

Read Check Write atomic bit Set on quadword in memory atomically loads a 128-bit quadword from memory,
performs a bitwise OR with the value held in a pair of registers on it, and conditionally stores the result back to
memory. Storing of the result back to memory is conditional on RCW Checks. The value initially loaded from
memory is returned in the same pair of registers. This instruction updates the condition flags based on the result of
the update of memory.

• RCWSETPA and RCWSETPAL load from memory with acquire semantics.

• RCWSETPL and RCWSETPAL store to memory with release semantics.

• RCWSETP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSETP variant

Applies when A == 0 && R == 0.

RCWSETP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSETPA variant

Applies when A == 1 && R == 0.

RCWSETPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSETPAL variant

Applies when A == 1 && R == 1.

RCWSETPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSETPL variant

Applies when A == 0 && R == 1.

RCWSETPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2276
ID032224 Non-Confidential

 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2277
ID032224 Non-Confidential

C6.2.285 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL

Read Check Write Software atomic bit Set on doubleword in memory atomically loads a 64-bit doubleword from
memory, performs a bitwise OR with the complement of the value held in a register on it, and conditionally stores
the result back to memory. Storing of the result back to memory is conditional on RCW Checks and RCWS Checks.
The value initially loaded from memory is returned in the destination register. This instruction updates the condition
flags based on the result of the update of memory.

• RCWSSETA and RCWSSETAL load from memory with acquire semantics.

• RCWSSETL and RCWSSETAL store to memory with release semantics.

• RCWSSET has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSSET variant

Applies when A == 0 && R == 0.

RCWSSET <Xs>, <Xt>, [<Xn|SP>]

RCWSSETA variant

Applies when A == 1 && R == 0.

RCWSSETA <Xs>, <Xt>, [<Xn|SP>]

RCWSSETAL variant

Applies when A == 1 && R == 1.

RCWSSETAL <Xs>, <Xt>, [<Xn|SP>]

RCWSSETL variant

Applies when A == 0 && R == 1.

RCWSSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2278
ID032224 Non-Confidential

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2279
ID032224 Non-Confidential

C6.2.286 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL

Read Check Write Software atomic bit Set on quadword in memory atomically loads a 128-bit quadword from
memory, performs a bitwise OR with the value held in a pair of registers on it, and conditionally stores the result
back to memory. Storing of the result back to memory is conditional on RCW Checks and RCWS Checks. The value
initially loaded from memory is returned in the same pair of registers. This instruction updates the condition flags
based on the result of the update of memory.

• RCWSSETPA and RCWSSETPAL load from memory with acquire semantics.

• RCWSSETPL and RCWSSETPAL store to memory with release semantics.

• RCWSSETP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSSETP variant

Applies when A == 0 && R == 0.

RCWSSETP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSETPA variant

Applies when A == 1 && R == 0.

RCWSSETPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSETPAL variant

Applies when A == 1 && R == 1.

RCWSSETPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSETPL variant

Applies when A == 0 && R == 1.

RCWSSETPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 1 0 1 1 0 0 1 A R 1 Rt2 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2280
ID032224 Non-Confidential

 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2281
ID032224 Non-Confidential

C6.2.287 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL

Read Check Write Software Swap doubleword in memory atomically loads a 64-bit doubleword from a memory
location, and conditionally stores the value held in a register back to the same memory location. Storing back to
memory is conditional on RCW Checks and RCWS Checks. The value initially loaded from memory is returned in
the destination register. This instruction updates the condition flags based on the result of the update of memory.

• RCWSSWPA and RCWSSWPAL load from memory with acquire semantics.

• RCWSSWPL and RCWSSWPAL store to memory with release semantics.

• RCWSSWP has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSSWP variant

Applies when A == 0 && R == 0.

RCWSSWP <Xs>, <Xt>, [<Xn|SP>]

RCWSSWPA variant

Applies when A == 1 && R == 0.

RCWSSWPA <Xs>, <Xt>, [<Xn|SP>]

RCWSSWPAL variant

Applies when A == 1 && R == 1.

RCWSSWPAL <Xs>, <Xt>, [<Xn|SP>]

RCWSSWPL variant

Applies when A == 0 && R == 1.

RCWSSWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2282
ID032224 Non-Confidential

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2283
ID032224 Non-Confidential

C6.2.288 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL

Read Check Write Software Swap quadword in memory atomically loads a 128-bit quadword from a memory
location, and conditionally stores the value held in a pair of registers back to the same memory location. Storing
back to memory is conditional on RCW Checks and RCWS Checks. The value initially loaded from memory is
returned in the same pair of registers. This instruction updates the condition flags based on the result of the update
of memory.

• RCWSSWPPA and RCWSSWPPAL load from memory with acquire semantics.

• RCWSSWPPL and RCWSSWPPAL store to memory with release semantics.

• RCWSSWPP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSSWPP variant

Applies when A == 0 && R == 0.

RCWSSWPP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSWPPA variant

Applies when A == 1 && R == 0.

RCWSSWPPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSWPPAL variant

Applies when A == 1 && R == 1.

RCWSSWPPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSWPPL variant

Applies when A == 0 && R == 1.

RCWSSWPPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 1 0 1 1 0 0 1 A R 1 Rt2 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2284
ID032224 Non-Confidential

 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2285
ID032224 Non-Confidential

C6.2.289 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL

Read Check Write Swap doubleword in memory atomically loads a 64-bit doubleword from a memory location, and
conditionally stores the value held in a register back to the same memory location. Storing back to memory is
conditional on RCW Checks. The value initially loaded from memory is returned in the destination register. This
instruction updates the condition flags based on the result of the update of memory.

• RCWSWPA and RCWSWPAL load from memory with acquire semantics.

• RCWSWPL and RCWSWPAL store to memory with release semantics.

• RCWSWP has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSWP variant

Applies when A == 0 && R == 0.

RCWSWP <Xs>, <Xt>, [<Xn|SP>]

RCWSWPA variant

Applies when A == 1 && R == 0.

RCWSWPA <Xs>, <Xt>, [<Xn|SP>]

RCWSWPAL variant

Applies when A == 1 && R == 1.

RCWSWPAL <Xs>, <Xt>, [<Xn|SP>]

RCWSWPL variant

Applies when A == 0 && R == 1.

RCWSWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2286
ID032224 Non-Confidential

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2287
ID032224 Non-Confidential

C6.2.290 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL

Read Check Write Swap quadword in memory atomically loads a 128-bit quadword from a memory location, and
conditionally stores the value held in a pair of registers back to the same memory location. Storing back to memory
is conditional on RCW Checks. The value initially loaded from memory is returned in the same pair of registers.
This instruction updates the condition flags based on the result of the update of memory.

• RCWSWPPA and RCWSWPPAL load from memory with acquire semantics.

• RCWSWPPL and RCWSWPPAL store to memory with release semantics.

• RCWSWPP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSWPP variant

Applies when A == 0 && R == 0.

RCWSWPP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSWPPA variant

Applies when A == 1 && R == 0.

RCWSWPPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSWPPAL variant

Applies when A == 1 && R == 1.

RCWSWPPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSWPPL variant

Applies when A == 0 && R == 1.

RCWSWPPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2288
ID032224 Non-Confidential

 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2289
ID032224 Non-Confidential

C6.2.291 RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine
return.

Encoding

RET {<Xn>}

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field. Defaults to X30 if absent.

Operation

 bits(64) target = X[n, 64];

 if (IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL)) then
 target = LoadCheckGCSRecord(target, GCSInstType_PRET);
 SetCurrentGCSPointer(GetCurrentGCSPointer() + 8);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '00';

 BranchTo(target, BranchType_RET, FALSE);

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2290
ID032224 Non-Confidential

C6.2.292 RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR,
using SP as the modifier and the specified key, and branches to the authenticated address, with a hint that this
instruction is a subroutine return.

Key A is used for RETAA. Key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to LR.

Integer

(FEAT_PAuth)

RETAA variant

Applies when M == 0.

RETAA

RETAB variant

Applies when M == 1.

RETAB

Decode for all variants of this encoding

 boolean use_key_a = (M == '0');

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

Operation

 GCSInstruction inst_type;
 bits(64) target = X[30, 64];

 bits(64) modifier = SP[];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 if (IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL)) then
 inst_type = if use_key_a then GCSInstType_PRETAA else GCSInstType_PRETAB;
 target = LoadCheckGCSRecord(target, inst_type);
 SetCurrentGCSPointer(GetCurrentGCSPointer() + 8);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '00';

 BranchTo(target, BranchType_RET, FALSE);

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A Rn Rm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2291
ID032224 Non-Confidential

C6.2.293 REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64. The pseudo-instruction is never the preferred
disassembly.

32-bit variant

Applies when sf == 0 && opc == 10.

REV <Wd>, <Wn>

64-bit variant

Applies when sf == 1 && opc == 11.

REV <Xd>, <Xn>

Decode for all variants of this encoding

 if opc == '11' && sf == '0' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);
 constant integer container_size = 8 << UInt(opc);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 constant integer containers = datasize DIV container_size;
 for c = 0 to containers-1
 bits(container_size) container = Elem[operand, c, container_size];
 Elem[result, c, container_size] = Reverse(container, 8);

 X[d, datasize] = result;

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 x Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2292
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2293
ID032224 Non-Confidential

C6.2.294 REV16

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

32-bit variant

Applies when sf == 0.

REV16 <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

REV16 <Xd>, <Xn>

Decode for all variants of this encoding

 if opc == '11' && sf == '0' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);
 constant integer container_size = 8 << UInt(opc);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 constant integer containers = datasize DIV container_size;
 for c = 0 to containers-1
 bits(container_size) container = Elem[operand, c, container_size];
 Elem[result, c, container_size] = Reverse(container, 8);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2294
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2295
ID032224 Non-Confidential

C6.2.295 REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

Encoding

REV32 <Xd>, <Xn>

Decode for this encoding

 if opc == '11' && sf == '0' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);
 constant integer container_size = 8 << UInt(opc);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 constant integer containers = datasize DIV container_size;
 for c = 0 to containers-1
 bits(container_size) container = Elem[operand, c, container_size];
 Elem[result, c, container_size] = Reverse(container, 8);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

sf opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2296
ID032224 Non-Confidential

C6.2.296 REV64

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an
assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

This instruction is a pseudo-instruction of the REV instruction. This means that:

• The encodings in this description are named to match the encodings of REV.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of REV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

64-bit variant

REV64 <Xd>, <Xn>

 is equivalent to

REV <Xd>, <Xn>

and is never the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of REV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

sf opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2297
ID032224 Non-Confidential

C6.2.297 RMIF

Performs a rotation right of a value held in a general purpose register by an immediate value, and then inserts a
selection of the bottom four bits of the result of the rotation into the PSTATE flags, under the control of a second
immediate mask.

Integer

(FEAT_FlagM)

Encoding

RMIF <Xn>, #<shift>, #<mask>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM) then UNDEFINED;
 constant integer lsb = UInt(imm6);
 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> Is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

<mask> Is the flag bit mask, an immediate in the range 0 to 15, which selects the bits that are inserted into
the NZCV condition flags, encoded in the "mask" field.

Operation

 bits(4) tmp;
 bits(64) tmpreg = X[n, 64];
 tmp = (tmpreg:tmpreg)<lsb+3:lsb>;
 if mask<3> == '1' then PSTATE.N = tmp<3>;
 if mask<2> == '1' then PSTATE.Z = tmp<2>;
 if mask<1> == '1' then PSTATE.C = tmp<1>;
 if mask<0> == '1' then PSTATE.V = tmp<0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 1 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn 0 mask

31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0

sf

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2298
ID032224 Non-Confidential

C6.2.298 ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the EXTR instruction. This means that:

• The encodings in this description are named to match the encodings of EXTR.

• The description of EXTR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 0xxxxx.

ROR <Wd>, <Ws>, #<shift>

 is equivalent to

EXTR <Wd>, <Ws>, <Ws>, #<shift>

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1 && N == 1.

ROR <Xd>, <Xs>, #<shift>

 is equivalent to

EXTR <Xd>, <Xs>, <Xs>, #<shift>

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Ws> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xs> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<shift> For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms"
field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2299
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2300
ID032224 Non-Confidential

C6.2.299 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is an alias of the RORV instruction. This means that:

• The encodings in this description are named to match the encodings of RORV.

• The description of RORV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

ROR <Wd>, <Wn>, <Wm>

 is equivalent to

RORV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

ROR <Xd>, <Xn>, <Xm>

 is equivalent to

RORV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of RORV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2301
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2302
ID032224 Non-Confidential

C6.2.300 RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is used by the alias ROR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

RORV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

RORV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2303
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2304
ID032224 Non-Confidential

C6.2.301 RPRFM

Range Prefetch Memory signals the memory system that data memory accesses from a specified range of addresses
are likely to occur in the near future. The instruction may also signal the memory system about the likelihood of
data reuse of the specified range of addresses. The memory system can respond by taking actions that are expected
to speed up the memory accesses when they do occur, such as prefetching locations within the specified address
ranges into one or more caches. The memory system may also exploit the data reuse hints to decide whether to retain
the data in other caches upon eviction from the innermost caches or to discard it.

The effect of an RPRFM instruction is IMPLEMENTATION DEFINED, but because these signals are only hints, the
instruction cannot cause a synchronous Data Abort exception and is guaranteed not to access Device memory. It is
valid for the PE to treat this instruction as a NOP.

An RPRFM instruction specifies the type of accesses and range of addresses using the following parameters:

• 'Type', in the <rprfop> operand opcode bits, specifies whether the prefetched data will be accessed by load or
store instructions.

• 'Policy', in the <rprfop> operand opcode bits, specifies whether the data is likely to be reused or if it is a
streaming, non-temporal prefetch. If a streaming prefetch is specified, then the 'ReuseDistance' parameter is
ignored.

• 'BaseAddress', in the 64-bit base register, holds the initial block address for the accesses.

• 'ReuseDistance', in the metadata register bits[63:60], indicates the maximum number of bytes to be accessed
by this PE before executing the next RPRFM instruction that specifies the same range. This includes the total
number of bytes inside and outside of the range that will be accessed by the same PE. This parameter can be
used to influence cache eviction and replacement policies, in order to retain the data in the most optimal levels
of the memory hierarchy after each access. If software cannot easily determine the amount of other memory
that will be accessed, these bits can be set to zero to indicate that 'ReuseDistance' is not known. Otherwise,
these four bits encode decreasing powers of two in the range 512MiB (0b0001) to 32KiB (0b1111).

• 'Stride', in the metadata register bits[59:38], is a signed, two's complement integer encoding of the number of
bytes to advance the block address after 'Length' bytes have been accessed, in the range -2MiB to +2MiB-1B.
A negative value indicates that the block address is advanced in a descending direction.

• 'Count', in the metadata register bits[37:22], is an unsigned integer encoding of the number of blocks of data
to be accessed minus 1, representing the range 1 to 65536 blocks. If 'Count' is 0, then the 'Stride' parameter
is ignored and only a single block of contiguous bytes from 'BaseAddress' to ('BaseAddress' + 'Length' - 1)
is described.

• 'Length', in the metadata register bits[21:0], is a signed, two's complement integer encoding of the number of
contiguous bytes to be accessed starting from the current block address, without changing the block address,
in the range -2MiB to +2MiB-1B. A negative value indicates that the bytes are accessed in a descending
direction.

Note

Software is expected to honor the parameters it provides to the RPRFM instruction, and the same PE should access all
locations in the range, in the direction specified by the sign of the 'Length' and 'Stride' parameters. A range prefetch
is considered active on a PE until all locations in the range have been accessed by the PE. A range prefetch might
also be inactivated by the PE prior to completion, for example due to a software context switch or lack of hardware
resources.

Software should not specify overlapping addresses in multiple active ranges. If a range is expected to be accessed
by both load and store instructions (read-modify-write), then a single range with a 'Type' parameter of PST (prefetch
for store) should be specified.

Integer

(FEAT_RPRFM)

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2305
ID032224 Non-Confidential

Encoding

RPRFM (<rprfop>|#<imm6>), <Xm>, [<Xn|SP>]

Decode for this encoding

 bits(6) operation = option<2>:option<0>:S:Rt<2:0>;
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<rprfop> Is the range prefetch operation, defined as <type><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<0>" field as 0.

PST Prefetch for store, encoded in the "Rt<0>" field as 1.

<policy> is one of:

KEEP Retained or temporal prefetch, for data that is expected to be kept in caches to be
accessed more than once, encoded in the "option<2>:option<0>:S:Rt<2:1>" fields as
0b00000.

STRM Streaming or non-temporal prefetch, for data that is expected to be accessed once and
not reused, encoded in the "option<2>:option<0>:S:Rt<2:1>" fields as 0b00010.

For other encodings of the "option<2>:option<0>:S:Rt<2:0>" fields, use <imm6>.

<imm6> Is the range prefetch operation encoding as an immediate, in the range 0 to 63, encoded in
"option<2>:option<0>:S:Rt<2:0>". This syntax is only for encodings that are not representable
using <rprfop>.

<Xm> Is the 64-bit name of the general-purpose register that holds an encoding of the metadata, encoded
in the "Rm" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address = if n == 31 then SP[] else X[n, 64];
 bits(64) metadata = X[m, 64];
 integer stride = SInt(metadata<59:38>);
 integer count = UInt(metadata<37:22>) + 1;
 integer length = SInt(metadata<21:0>);
 integer reuse;

 if metadata<63:60> == '0000' then
 reuse = -1; // Not known
 else
 reuse = 32768 << (15 - UInt(metadata<63:60>));

 Hint_RangePrefetch(address, length, stride, count, reuse, operation);

1 1 1 1 1 0 0 0 1 0 1 Rm x 1 x S 1 0 Rn 1 1 x x x

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc option Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2306
ID032224 Non-Confidential

C6.2.302 SB

Speculation Barrier is a barrier that controls speculation. For more information and details of the semantics, see
Speculation Barrier (SB).

System

(FEAT_SB)

Encoding

SB

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SB) then UNDEFINED;

Operation

 SpeculationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 (0) (0) (0) (0) 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2307
ID032224 Non-Confidential

C6.2.303 SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes
the result to the destination register.

This instruction is used by the alias NGC. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

SBC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SBC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];

 operand2 = NOT(operand2);

Alias is preferred when

NGC Rn == '11111'

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2308
ID032224 Non-Confidential

 (result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2309
ID032224 Non-Confidential

C6.2.304 SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

SBCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SBCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 bits(4) nzcv;

 operand2 = NOT(operand2);

Alias is preferred when

NGCS Rn == '11111'

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2310
ID032224 Non-Confidential

 (result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2311
ID032224 Non-Confidential

C6.2.305 SBFIZ

Signed Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits below the bitfield to zero, and the bits
above the bitfield to a copy of the most significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SBFIZ <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

SBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFIZ <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

SBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2312
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2313
ID032224 Non-Confidential

C6.2.306 SBFM

Signed Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below the bitfield are set to zero, and the bits above the bitfield are set to a copy
of the most significant bit of the bitfield.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW. See Alias
conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

SBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

SBFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 integer r;
 integer s;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 r = UInt(immr);
 s = UInt(imms);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE, datasize);

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2314
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) src = X[n, datasize];

 // perform bitfield move on low bits
 bits(datasize) bot = ROR(src, r) AND wmask;

 // determine extension bits (sign, zero or dest register)
 bits(datasize) top = Replicate(src<s>, datasize);

 // combine extension bits and result bits
 X[d, datasize] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias of variant is preferred when

ASR (immediate) 32-bit imms == '011111'

ASR (immediate) 64-bit imms == '111111'

SBFIZ -
UInt(imms) < UInt(immr)

SBFX -
BFXPreferred(sf, opc<1>, imms, immr)

SXTB - immr == '000000' && imms == '000111'

SXTH - immr == '000000' && imms == '001111'

SXTW - immr == '000000' && imms == '011111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2315
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2316
ID032224 Non-Confidential

C6.2.307 SBFX

Signed Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the
least significant bits of the destination register, and sets destination bits above the bitfield to a copy of the most
significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SBFX <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFX <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2317
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2318
ID032224 Non-Confidential

C6.2.308 SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result
to the destination register. The condition flags are not affected.

32-bit variant

Applies when sf == 0.

SDIV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result;

 if IsZero(operand2) then
 result = 0;
 else
 result = RoundTowardsZero(Real(Int(operand1, FALSE)) / Real(Int(operand2, FALSE)));

 X[d, datasize] = result<datasize-1:0>;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2319
ID032224 Non-Confidential

C6.2.309 SETF8, SETF16

Set the PSTATE.NZV flags based on the value in the specified general-purpose register. SETF8 treats the value as an
8 bit value, and SETF16 treats the value as an 16 bit value.

The PSTATE.C flag is not affected by these instructions.

Integer

(FEAT_FlagM)

SETF8 variant

Applies when sz == 0.

SETF8 <Wn>

SETF16 variant

Applies when sz == 1.

SETF16 <Wn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FlagM) then UNDEFINED;
 constant integer msb = (8 << UInt(sz)) - 1;
 integer n = UInt(Rn);

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(32) tmpreg = X[n, 32];
 PSTATE.N = tmpreg<msb>;
 PSTATE.Z = if (tmpreg<msb:0> == Zeros(msb + 1)) then '1' else '0';
 PSTATE.V = tmpreg<msb+1> EOR tmpreg<msb>;
 //PSTATE.C unchanged;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 sz 0 0 1 0 Rn 0 1 1 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sf

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2320
ID032224 Non-Confidential

C6.2.310 SETGP, SETGM, SETGE

Memory Set with tag setting. These instructions perform a memory set using the value in the bottom byte of the
source register and store an Allocation Tag to memory for each Tag Granule written. The Allocation Tag is
calculated from the Logical Address Tag in the register which holds the first address that the set is made to. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETGP, then SETGM, and then SETGE.

SETGP performs some preconditioning of the arguments suitable for using the SETGM instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory set. SETGM performs an IMPLEMENTATION DEFINED amount
of the memory set. SETGE performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGP, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGP, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2321
ID032224 Non-Confidential

For SETGE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1000.

SETGE [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0100.

SETGM [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0000.

SETGP [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2322
ID032224 Non-Confidential

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2323
ID032224 Non-Confidential

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2324
ID032224 Non-Confidential

 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2325
ID032224 Non-Confidential

C6.2.311 SETGPN, SETGMN, SETGEN

Memory Set with tag setting, non-temporal. These instructions perform a memory set using the value in the bottom
byte of the source register and store an Allocation Tag to memory for each Tag Granule written. The Allocation Tag
is calculated from the Logical Address Tag in the register which holds the first address that the set is made to. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETGPN, then SETGMN, and then SETGEN.

SETGPN performs some preconditioning of the arguments suitable for using the SETGMN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETGMN performs an IMPLEMENTATION
DEFINED amount of the memory set. SETGEN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGPN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGPN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2326
ID032224 Non-Confidential

For SETGEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1010.

SETGEN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0110.

SETGMN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0010.

SETGPN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2327
ID032224 Non-Confidential

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2328
ID032224 Non-Confidential

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2329
ID032224 Non-Confidential

 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2330
ID032224 Non-Confidential

C6.2.312 SETGPT, SETGMT, SETGET

Memory Set with tag setting, unprivileged. These instructions perform a memory set using the value in the bottom
byte of the source register and store an Allocation Tag to memory for each Tag Granule written. The Allocation Tag
is calculated from the Logical Address Tag in the register which holds the first address that the set is made to. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETGPT, then SETGMT, and then SETGET.

SETGPT performs some preconditioning of the arguments suitable for using the SETGMT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETGMT performs an IMPLEMENTATION
DEFINED amount of the memory set. SETGET performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGPT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGPT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2331
ID032224 Non-Confidential

For SETGET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1001.

SETGET [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0101.

SETGMT [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0001.

SETGPT [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2332
ID032224 Non-Confidential

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2333
ID032224 Non-Confidential

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2334
ID032224 Non-Confidential

 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2335
ID032224 Non-Confidential

C6.2.313 SETGPTN, SETGMTN, SETGETN

Memory Set with tag setting, unprivileged and non-temporal. These instructions perform a memory set using the
value in the bottom byte of the source register and store an Allocation Tag to memory for each Tag Granule written.
The Allocation Tag is calculated from the Logical Address Tag in the register which holds the first address that the
set is made to. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: SETGPTN, then SETGMTN, and then SETGETN.

SETGPTN performs some preconditioning of the arguments suitable for using the SETGMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETGMTN performs an IMPLEMENTATION
DEFINED amount of the memory set. SETGETN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGPTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGPTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2336
ID032224 Non-Confidential

For SETGETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1011.

SETGETN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0111.

SETGMTN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0011.

SETGPTN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2337
ID032224 Non-Confidential

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2338
ID032224 Non-Confidential

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2339
ID032224 Non-Confidential

 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2340
ID032224 Non-Confidential

C6.2.314 SETP, SETM, SETE

Memory Set. These instructions perform a memory set using the value in the bottom byte of the source register. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETP, then SETM, and then SETE.

SETP performs some preconditioning of the arguments suitable for using the SETM instruction, and performs an
IMPLEMENTATION DEFINED amount of the memory set. SETM performs an IMPLEMENTATION DEFINED amount of
the memory set. SETE performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETP, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETP, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2341
ID032224 Non-Confidential

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1000.

SETE [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0100.

SETM [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0000.

SETP [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2342
ID032224 Non-Confidential

 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2343
ID032224 Non-Confidential

 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2344
ID032224 Non-Confidential

C6.2.315 SETPN, SETMN, SETEN

Memory Set, non-temporal. These instructions perform a memory set using the value in the bottom byte of the
source register. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: SETPN, then SETMN, and then SETEN.

SETPN performs some preconditioning of the arguments suitable for using the SETMN instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory set. SETMN performs an IMPLEMENTATION DEFINED amount
of the memory set. SETEN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETPN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETPN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2345
ID032224 Non-Confidential

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1010.

SETEN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0110.

SETMN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0010.

SETPN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2346
ID032224 Non-Confidential

 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2347
ID032224 Non-Confidential

 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2348
ID032224 Non-Confidential

C6.2.316 SETPT, SETMT, SETET

Memory Set, unprivileged. These instructions perform a memory set using the value in the bottom byte of the source
register. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: SETPT, then SETMT, and then SETET.

SETPT performs some preconditioning of the arguments suitable for using the SETMT instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory set. SETMT performs an IMPLEMENTATION DEFINED amount
of the memory set. SETET performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETPT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETPT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2349
ID032224 Non-Confidential

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1001.

SETET [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0101.

SETMT [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0001.

SETPT [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2350
ID032224 Non-Confidential

 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2351
ID032224 Non-Confidential

 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2352
ID032224 Non-Confidential

C6.2.317 SETPTN, SETMTN, SETETN

Memory Set, unprivileged and non-temporal. These instructions perform a memory set using the value in the bottom
byte of the source register. The prologue, main, and epilogue instructions are expected to be run in succession and
to appear consecutively in memory: SETPTN, then SETMTN, and then SETETN.

SETPTN performs some preconditioning of the arguments suitable for using the SETMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETMTN performs an IMPLEMENTATION
DEFINED amount of the memory set. SETETN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETPTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETPTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2353
ID032224 Non-Confidential

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1011.

SETETN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0111.

SETMTN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0011.

SETPTN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2354
ID032224 Non-Confidential

 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2355
ID032224 Non-Confidential

 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2356
ID032224 Non-Confidential

C6.2.318 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait for Event.

Encoding

SEV

Decode for this encoding

 // Empty.

Operation

 SendEvent();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2357
ID032224 Non-Confidential

C6.2.319 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

Encoding

SEVL

Decode for this encoding

 // Empty.

Operation

 SendEventLocal();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2358
ID032224 Non-Confidential

C6.2.320 SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result
to the 64-bit destination register.

This instruction is used by the alias SMULL. See Alias conditions for details of when each alias is preferred.

Encoding

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, FALSE) + (Int(operand1, FALSE) * Int(operand2, FALSE));

 X[d, 64] = result<63:0>;

Alias is preferred when

SMULL Ra == '11111'

1 0 0 1 1 0 1 1 0 0 1 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2359
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2360
ID032224 Non-Confidential

C6.2.321 SMAX (immediate)

Signed Maximum (immediate) determines the signed maximum of the source register value and immediate, and
writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMAX <Wd>, <Wn>, #<simm>

64-bit variant

Applies when sf == 1.

SMAX <Xd>, <Xn>, #<simm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<simm> Is a signed immediate, in the range -128 to 127, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Max(SInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 0 0 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2361
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2362
ID032224 Non-Confidential

C6.2.322 SMAX (register)

Signed Maximum (register) determines the signed maximum of the two source register values and writes the result
to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMAX <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SMAX <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Max(SInt(operand1), SInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2363
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2364
ID032224 Non-Confidential

C6.2.323 SMC

Secure Monitor Call causes an exception to EL3.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher
generates a Secure Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17, that is taken to EL3.

If the value of HCR_EL2.TSC is 1 and EL2 is enabled in the current Security state, execution of an SMC instruction
at EL1 generates an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

Encoding

SMC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.CheckForSMCUndefOrTrap(imm16);
 AArch64.CallSecureMonitor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2365
ID032224 Non-Confidential

C6.2.324 SMIN (immediate)

Signed Minimum (immediate) determines the signed minimum of the source register value and immediate, and
writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMIN <Wd>, <Wn>, #<simm>

64-bit variant

Applies when sf == 1.

SMIN <Xd>, <Xn>, #<simm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<simm> Is a signed immediate, in the range -128 to 127, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Min(SInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 1 0 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2366
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2367
ID032224 Non-Confidential

C6.2.325 SMIN (register)

Signed Minimum (register) determines the signed minimum of the two source register values and writes the result
to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMIN <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SMIN <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Min(SInt(operand1), SInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2368
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2369
ID032224 Non-Confidential

C6.2.326 SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the
64-bit destination register.

This instruction is an alias of the SMSUBL instruction. This means that:

• The encodings in this description are named to match the encodings of SMSUBL.

• The description of SMSUBL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

SMNEGL <Xd>, <Wn>, <Wm>

 is equivalent to

SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 0 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2370
ID032224 Non-Confidential

C6.2.327 SMSTART

Enables access to Streaming SVE mode and SME architectural state.

SMSTART enters Streaming SVE mode, and enables the SME ZA storage.

SMSTART SM enters Streaming SVE mode, but does not enable the SME ZA storage.

SMSTART ZA enables the SME ZA storage, but does not cause an entry to Streaming SVE mode.

This instruction is an alias of the MSR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

System

(FEAT_SME)

Encoding

SMSTART {<option>}

 is equivalent to

MSR <pstatefield>, #1

and is always the preferred disassembly.

Assembler symbols

<option> Is an optional mode, encoded in the "CRm<2:1>" field. It can have the following values:

SM when CRm<2:1> = 01

ZA when CRm<2:1> = 10

[no specifier] when CRm<2:1> = 11

The encoding CRm<2:1> = 00 is reserved.

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in the "op1:op2:CRm" field. It
can have the following values:

SPSel when op1 = 000, op2 = 101, CRm = xxxx

DAIFSet when op1 = 011, op2 = 110, CRm = xxxx

DAIFClr when op1 = 011, op2 = 111, CRm = xxxx

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011, CRm = xxxx

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100, CRm = xxxx

When FEAT_NMI is implemented, the following value is also valid:

ALLINT when op1 = 001, op2 = 000, CRm = 000x

When FEAT_EBEP is implemented, the following value is also valid:

PM when op1 = 001, op2 = 000, CRm = 001x

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 x x 1 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0

op1 CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2371
ID032224 Non-Confidential

When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001, CRm = xxxx

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010, CRm = xxxx

When FEAT_SME is implemented, the following values are also valid:

SVCRSM when op1 = 011, op2 = 011, CRm = 001x

SVCRZA when op1 = 011, op2 = 011, CRm = 010x

SVCRSMZA when op1 = 011, op2 = 011, CRm = 011x

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100, CRm = xxxx

See PSTATE when op1 = 000, op2 = 00x, CRm = xxxx.

See PSTATE when op1 = 000, op2 = 010, CRm = xxxx.

The following encodings are reserved:

• op1 = 000, op2 = 11x, CRm = xxxx.

• op1 = 001, op2 = 000, CRm = 01xx.

• op1 = 001, op2 = 000, CRm = 1xxx.

• op1 = 001, op2 = 001, CRm = xxxx.

• op1 = 001, op2 = 01x, CRm = xxxx.

• op1 = 001, op2 = 1xx, CRm = xxxx.

• op1 = 010, op2 = xxx, CRm = xxxx.

• op1 = 011, op2 = 000, CRm = xxxx.

• op1 = 011, op2 = 011, CRm = 000x.

• op1 = 011, op2 = 011, CRm = 1xxx.

• op1 = 011, op2 = 101, CRm = xxxx.

• op1 = 1xx, op2 = xxx, CRm = xxxx.

 For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01 specifies
SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2372
ID032224 Non-Confidential

C6.2.328 SMSTOP

Disables access to Streaming SVE mode and SME architectural state.

SMSTOP exits Streaming SVE mode, and disables the SME ZA storage.

SMSTOP SM exits Streaming SVE mode, but does not disable the SME ZA storage.

SMSTOP ZA disables the SME ZA storage, but does not cause an exit from Streaming SVE mode.

This instruction is an alias of the MSR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

System

(FEAT_SME)

Encoding

SMSTOP {<option>}

 is equivalent to

MSR <pstatefield>, #0

and is always the preferred disassembly.

Assembler symbols

<option> Is an optional mode, encoded in the "CRm<2:1>" field. It can have the following values:

SM when CRm<2:1> = 01

ZA when CRm<2:1> = 10

[no specifier] when CRm<2:1> = 11

The encoding CRm<2:1> = 00 is reserved.

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in the "op1:op2:CRm" field. It
can have the following values:

SPSel when op1 = 000, op2 = 101, CRm = xxxx

DAIFSet when op1 = 011, op2 = 110, CRm = xxxx

DAIFClr when op1 = 011, op2 = 111, CRm = xxxx

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011, CRm = xxxx

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100, CRm = xxxx

When FEAT_NMI is implemented, the following value is also valid:

ALLINT when op1 = 001, op2 = 000, CRm = 000x

When FEAT_EBEP is implemented, the following value is also valid:

PM when op1 = 001, op2 = 000, CRm = 001x

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 x x 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0

op1 CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2373
ID032224 Non-Confidential

When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001, CRm = xxxx

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010, CRm = xxxx

When FEAT_SME is implemented, the following values are also valid:

SVCRSM when op1 = 011, op2 = 011, CRm = 001x

SVCRZA when op1 = 011, op2 = 011, CRm = 010x

SVCRSMZA when op1 = 011, op2 = 011, CRm = 011x

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100, CRm = xxxx

See PSTATE when op1 = 000, op2 = 00x, CRm = xxxx.

See PSTATE when op1 = 000, op2 = 010, CRm = xxxx.

The following encodings are reserved:

• op1 = 000, op2 = 11x, CRm = xxxx.

• op1 = 001, op2 = 000, CRm = 01xx.

• op1 = 001, op2 = 000, CRm = 1xxx.

• op1 = 001, op2 = 001, CRm = xxxx.

• op1 = 001, op2 = 01x, CRm = xxxx.

• op1 = 001, op2 = 1xx, CRm = xxxx.

• op1 = 010, op2 = xxx, CRm = xxxx.

• op1 = 011, op2 = 000, CRm = xxxx.

• op1 = 011, op2 = 011, CRm = 000x.

• op1 = 011, op2 = 011, CRm = 1xxx.

• op1 = 011, op2 = 101, CRm = xxxx.

• op1 = 1xx, op2 = xxx, CRm = xxxx.

 For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01 specifies
SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2374
ID032224 Non-Confidential

C6.2.329 SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias SMNEGL. See Alias conditions for details of when each alias is preferred.

Encoding

SMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, FALSE) - (Int(operand1, FALSE) * Int(operand2, FALSE));
 X[d, 64] = result<63:0>;

Alias is preferred when

SMNEGL Ra == '11111'

1 0 0 1 1 0 1 1 0 0 1 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2375
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2376
ID032224 Non-Confidential

C6.2.330 SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit
destination register.

Encoding

SMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

 bits(64) operand1 = X[n, 64];
 bits(64) operand2 = X[m, 64];

 integer result;

 result = Int(operand1, FALSE) * Int(operand2, FALSE);

 X[d, 64] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2377
ID032224 Non-Confidential

C6.2.331 SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the SMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of SMADDL.

• The description of SMADDL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

SMULL <Xd>, <Wn>, <Wm>

 is equivalent to

SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 0 1 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2378
ID032224 Non-Confidential

C6.2.332 SSBB

Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions. For more information and details of the semantics, see
Speculative Store Bypass Barrier (SSBB).

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

SSBB

 is equivalent to

DSB #0

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2379
ID032224 Non-Confidential

C6.2.333 ST2G

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the store is
calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is
calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

ST2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

ST2G <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 1 0 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 0 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 0 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2380
ID032224 Non-Confidential

Encoding

ST2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, TAG_GRANULE, accdesc);

 AArch64.MemTag[address, accdesc] = tag;
 AArch64.MemTag[address2, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2381
ID032224 Non-Confidential

C6.2.334 ST64B

Single-copy Atomic 64-byte Store without status result stores eight 64-bit doublewords from consecutive registers,
Xt to X(t+7), to a memory location. The data that is stored is atomic and is required to be 64-byte aligned.

Integer

(FEAT_LS64)

Encoding

ST64B <Xt>, [<Xn|SP> {,#0}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_STORE;
 boolean tagchecked = n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckLDST64BEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 for i = 0 to 7
 value = X[t+i, 64];
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 MemStore64B(address, data, accdesc);

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2382
ID032224 Non-Confidential

C6.2.335 ST64BV

Single-copy Atomic 64-byte Store with status result stores eight 64-bit doublewords from consecutive registers, Xt
to X(t+7), to a memory location, and writes the status result of the store to a register. The data that is stored is atomic
and is required to be 64-byte aligned.

Integer

(FEAT_LS64_V)

Encoding

ST64BV <Xs>, <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64_V) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_STORE;
 integer s = UInt(Rs);
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.

The value returned is:

0xFFFFFFFF_FFFFFFFFIf the memory location accessed does not support this instruction. In this case,
the value at the memory location is UNKNOWN.

!= 0xFFFFFFFF_FFFFFFFFIf the memory location accessed does support this instruction. In this case,
the peripheral that provides the response defines the returned value and provides
information on the state of the memory update at the memory location.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckST64BVEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 bits(64) status;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 for i = 0 to 7
 value = X[t+i, 64];
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2383
ID032224 Non-Confidential

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 status = MemStore64BWithRet(address, data, accdesc);

 if s != 31 then X[s, 64] = status;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2384
ID032224 Non-Confidential

C6.2.336 ST64BV0

Single-copy Atomic 64-byte EL0 Store with status result stores eight 64-bit doublewords from consecutive
registers, Xt to X(t+7), to a memory location, with the bottom 32 bits taken from ACCDATA_EL1, and writes the
status result of the store to a register. The data that is stored is atomic and is required to be 64-byte aligned.

Integer

(FEAT_LS64_ACCDATA)

Encoding

ST64BV0 <Xs>, <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64_ACCDATA) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_STORE;
 integer s = UInt(Rs);
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.

The value returned is:

0xFFFFFFFF_FFFFFFFFIf the memory location accessed does not support this instruction. In this case,
the value at the memory location is UNKNOWN.

!= 0xFFFFFFFF_FFFFFFFFIf the memory location accessed does support this instruction. In this case,
the peripheral that provides the response defines the returned value and provides
information on the state of the memory update at the memory location.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckST64BV0Enabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 bits(64) status;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 bits(64) Xt = X[t, 64];
 value<31:0> = ACCDATA_EL1<31:0>;
 value<63:32> = Xt<63:32>;
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2385
ID032224 Non-Confidential

 data<63:0> = value;
 for i = 1 to 7
 value = X[t+i, 64];
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 status = MemStore64BWithRet(address, data, accdesc);

 if s != 31 then X[s, 64] = status;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2386
ID032224 Non-Confidential

C6.2.337 STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory.

• STADD does not have release semantics.

• STADDL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDADD, LDADDA, LDADDAL, LDADDL instruction. This means that:

• The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL,
LDADDL.

• The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDADD alias variant

Applies when size == 10 && R == 0.

STADD <Ws>, [<Xn|SP>]

 is equivalent to

LDADD <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDADDL alias variant

Applies when size == 10 && R == 1.

STADDL <Ws>, [<Xn|SP>]

 is equivalent to

LDADDL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDADD alias variant

Applies when size == 11 && R == 0.

STADD <Xs>, [<Xn|SP>]

 is equivalent to

LDADD <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2387
ID032224 Non-Confidential

64-bit LDADDL alias variant

Applies when size == 11 && R == 1.

STADDL <Xs>, [<Xn|SP>]

 is equivalent to

LDADDL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2388
ID032224 Non-Confidential

C6.2.338 STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in
a register to it, and stores the result back to memory.

• STADDB does not have release semantics.

• STADDLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDADDB, LDADDAB, LDADDALB, LDADDLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDADDB, LDADDAB,
LDADDALB, LDADDLB.

• The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STADDB <Ws>, [<Xn|SP>]

 is equivalent to

LDADDB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STADDLB <Ws>, [<Xn|SP>]

 is equivalent to

LDADDLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2389
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2390
ID032224 Non-Confidential

C6.2.339 STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value
held in a register to it, and stores the result back to memory.

• STADDH does not have release semantics.

• STADDLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDADDH, LDADDAH, LDADDALH, LDADDLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDADDH, LDADDAH,
LDADDALH, LDADDLH.

• The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STADDH <Ws>, [<Xn|SP>]

 is equivalent to

LDADDH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STADDLH <Ws>, [<Xn|SP>]

 is equivalent to

LDADDLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2391
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2392
ID032224 Non-Confidential

C6.2.340 STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory.

• STCLR does not have release semantics.

• STCLRL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDCLR, LDCLRA, LDCLRAL, LDCLRL instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLR, LDCLRA, LDCLRAL,
LDCLRL.

• The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDCLR alias variant

Applies when size == 10 && R == 0.

STCLR <Ws>, [<Xn|SP>]

 is equivalent to

LDCLR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDCLRL alias variant

Applies when size == 10 && R == 1.

STCLRL <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDCLR alias variant

Applies when size == 11 && R == 0.

STCLR <Xs>, [<Xn|SP>]

 is equivalent to

LDCLR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2393
ID032224 Non-Confidential

64-bit LDCLRL alias variant

Applies when size == 11 && R == 1.

STCLRL <Xs>, [<Xn|SP>]

 is equivalent to

LDCLRL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2394
ID032224 Non-Confidential

C6.2.341 STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRB does not have release semantics.

• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

• The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STCLRB <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STCLRLB <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2395
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2396
ID032224 Non-Confidential

C6.2.342 STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRH does not have release semantics.

• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH.

• The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STCLRH <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STCLRLH <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2397
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2398
ID032224 Non-Confidential

C6.2.343 STEOR, STEORL

Atomic Exclusive-OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive-OR with the value held in a register on it, and stores the result
back to memory.

• STEOR does not have release semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDEOR, LDEORA, LDEORAL, LDEORL instruction. This means that:

• The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL,
LDEORL.

• The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDEOR alias variant

Applies when size == 10 && R == 0.

STEOR <Ws>, [<Xn|SP>]

 is equivalent to

LDEOR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDEORL alias variant

Applies when size == 10 && R == 1.

STEORL <Ws>, [<Xn|SP>]

 is equivalent to

LDEORL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDEOR alias variant

Applies when size == 11 && R == 0.

STEOR <Xs>, [<Xn|SP>]

 is equivalent to

LDEOR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2399
ID032224 Non-Confidential

64-bit LDEORL alias variant

Applies when size == 11 && R == 1.

STEORL <Xs>, [<Xn|SP>]

 is equivalent to

LDEORL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2400
ID032224 Non-Confidential

C6.2.344 STEORB, STEORLB

Atomic Exclusive-OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an
exclusive-OR with the value held in a register on it, and stores the result back to memory.

• STEORB does not have release semantics.

• STEORLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDEORB, LDEORAB, LDEORALB, LDEORLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB,
LDEORLB.

• The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STEORB <Ws>, [<Xn|SP>]

 is equivalent to

LDEORB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STEORLB <Ws>, [<Xn|SP>]

 is equivalent to

LDEORLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2401
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2402
ID032224 Non-Confidential

C6.2.345 STEORH, STEORLH

Atomic Exclusive-OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
performs an exclusive-OR with the value held in a register on it, and stores the result back to memory.

• STEORH does not have release semantics.

• STEORLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDEORH, LDEORAH, LDEORALH, LDEORLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDEORH, LDEORAH,
LDEORALH, LDEORLH.

• The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STEORH <Ws>, [<Xn|SP>]

 is equivalent to

LDEORH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STEORLH <Ws>, [<Xn|SP>]

 is equivalent to

LDEORLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2403
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2404
ID032224 Non-Confidential

C6.2.346 STG

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated from the base
register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical
Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STG <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 0 0 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 0 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 0 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2405
ID032224 Non-Confidential

Encoding

STG <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);
 AArch64.MemTag[address, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2406
ID032224 Non-Confidential

C6.2.347 STGM

Store Tag Multiple writes a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and the Allocation Tag written to address A is taken from the source register at
4*A<7:4>+3:4*A<7:4>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Integer

(FEAT_MTE2)

Encoding

STGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE2) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = X[t, 64];
 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
 address = Align(address, size);
 constant integer count = size >> LOG2_TAG_GRANULE;
 integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);
 constant bits(64) curraddress = address;
 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 for i = 0 to count-1
 bits(4) tag = Elem[data, index, 4];
 AArch64.MemTag[address, accdesc] = tag;
 address = GenerateAddress(address, TAG_GRANULE, accdesc);
 index = index + 1;

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2407
ID032224 Non-Confidential

C6.2.348 STGP

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to memory, from
two registers. The address used for the store is calculated from the base register and an immediate signed offset
scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the base register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

0 1 1 0 1 0 0 0 1 0 simm7 Xt2 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

0 1 1 0 1 0 0 1 1 0 simm7 Xt2 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2408
ID032224 Non-Confidential

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Xt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Xt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<imm> For the post-index and pre-index variant: is the signed immediate offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "simm7" field.

For the signed offset variant: is the optional signed immediate offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "simm7" field.

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(64) data1;
 bits(64) data2;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data1 = X[t, 64];
 data2 = X[t2, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if !IsAligned(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 address2 = GenerateAddress(address, 8, accdesc);
 Mem[address, 8, accdesc] = data1;
 Mem[address2, 8, accdesc] = data2;

 AArch64.MemTag[address, accdesc] = AArch64.AllocationTagFromAddress(address);

0 1 1 0 1 0 0 1 0 0 simm7 Xt2 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2409
ID032224 Non-Confidential

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2410
ID032224 Non-Confidential

C6.2.349 STILP

Store-Release ordered Pair of registers calculates an address from a base register value and an optional offset, and
stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information on
single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of
data accesses. The instruction also has memory ordering semantics, as described in Load-Acquire,
Load-AcquirePC, and Store-Release, with the additional requirement that:

• When using the pre-index addressing mode, the Memory effects associated with Xt2/Wt2 are Ordered-before
the Memory effects associated with Xt1/Wt1.

• For all other addressing modes, the Memory effects associated with Xt1/Wt1 are Ordered-before the Memory
effects associated with Xt2/Wt2.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC3)

32-bit variant

Applies when size == 10 && opc2 == 0001.

STILP <Wt1>, <Wt2>, [<Xn|SP>]

32-bit pre-index variant

Applies when size == 10 && opc2 == 0000.

STILP <Wt1>, <Wt2>, [<Xn|SP>, #-8]!

64-bit variant

Applies when size == 11 && opc2 == 0001.

STILP <Xt1>, <Xt2>, [<Xn|SP>]

64-bit pre-index variant

Applies when size == 11 && opc2 == 0000.

STILP <Xt1>, <Xt2>, [<Xn|SP>, #-16]!

Decode for all variants of this encoding

 boolean wback;
 wback = opc2<0> == '0';

Notes for all encodings

STILP has the same CONSTRAINED UNPREDICTABLE behavior as STP. For information about this CONSTRAINED
UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and
particularly STP and STILP.

1 x 0 1 1 0 0 1 0 0 0 Rt2 0 0 0 x 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

size L opc2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2411
ID032224 Non-Confidential

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Shared decode for all encodings

 integer offset;
 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 constant integer scale = 2 + UInt(size<0>);
 constant integer datasize = 8 << scale;
 offset = if opc2<0> == '0' then -1 * (2 << scale) else 0;

 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown && t == n then
 data1 = bits(datasize) UNKNOWN;
 else
 data1 = X[t, datasize];
 if rt_unknown && t2 == n then
 data2 = bits(datasize) UNKNOWN;
 else
 data2 = X[t2, datasize];

 if IsFeatureImplemented(FEAT_LSE2) then

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2412
ID032224 Non-Confidential

 bits(2*datasize) full_data;
 if BigEndian(accdesc.acctype) then
 full_data = data1:data2;
 else
 full_data = data2:data1;
 accdesc.ispair = TRUE;
 accdesc.highestaddressfirst = offset < 0;
 Mem[address, 2*dbytes, accdesc] = full_data;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 if offset < 0 then
 // Reverse the memory write order for negative pre-index.
 Mem[address2, dbytes, accdesc] = data2;
 Mem[address, dbytes, accdesc] = data1;
 else
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;
 if wback then
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2413
ID032224 Non-Confidential

C6.2.350 STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information
about memory accesses, see Load/store addressing modes.

No offset

(FEAT_LOR)

32-bit variant

Applies when size == 10.

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_STORE, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, elsize];
 Mem[address, dbytes, accdesc] = data;

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2414
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2415
ID032224 Non-Confidential

C6.2.351 STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information about memory
accesses, see Load/store addressing modes.

No offset

(FEAT_LOR)

Encoding

STLLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_STORE, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2416
ID032224 Non-Confidential

C6.2.352 STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information about
memory accesses, see Load/store addressing modes.

No offset

(FEAT_LOR)

Encoding

STLLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_STORE, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2417
ID032224 Non-Confidential

C6.2.353 STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release.
For information about memory accesses, see Load/store addressing modes.

No offset

32-bit variant

Applies when size == 10.

STLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 boolean wback = FALSE;
 integer offset = 0;
 boolean rt_unknown = FALSE;

 constant integer elsize = 8 << UInt(size);
 constant integer datasize = elsize;
 boolean tagchecked = n != 31;

Pre-index

(FEAT_LRCPC3)

32-bit variant

Applies when size == 10.

STLR <Wt>, [<Xn|SP>, #-4]!

64-bit variant

Applies when size == 11.

STLR <Xt>, [<Xn|SP>, #-8]!

Decode for all variants of this encoding

 boolean wback = TRUE;

 integer n = UInt(Rn);

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

1 x 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2418
ID032224 Non-Confidential

 integer t = UInt(Rt);

 constant integer datasize = 8 << UInt(size);
 integer offset = -1 * (1 << UInt(size));
 boolean tagchecked = TRUE;

 boolean rt_unknown = FALSE;

 if n == t && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);
 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 data = X[t, datasize];
 Mem[address, dbytes, accdesc] = data;

 if wback then
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2419
ID032224 Non-Confidential

C6.2.354 STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information
about memory accesses, see Load/store addressing modes.

Encoding

STLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, 0, accdesc);
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2420
ID032224 Non-Confidential

C6.2.355 STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For
information about memory accesses, see Load/store addressing modes.

Encoding

STLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, 0, accdesc);
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2421
ID032224 Non-Confidential

C6.2.356 STLUR

Store-Release Register (unscaled) calculates an address from a base register value and an immediate offset, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when size == 10.

STLUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STLUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

1 x 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2422
ID032224 Non-Confidential

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2423
ID032224 Non-Confidential

C6.2.357 STLURB

Store-Release Register Byte (unscaled) calculates an address from a base register value and an immediate offset,
and stores a byte to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

STLURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

0 0 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2424
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2425
ID032224 Non-Confidential

C6.2.358 STLURH

Store-Release Register Halfword (unscaled) calculates an address from a base register value and an immediate
offset, and stores a halfword to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

STLURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

0 1 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2426
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2427
ID032224 Non-Confidential

C6.2.359 STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location
if the PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store
was successful, or of 1 if no store was performed. See Synchronization and semaphores. For information on
single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of
data accesses. If a 64-bit pair Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit
memory location being updated. The instruction also has memory ordering semantics, as described in Load-Acquire,
Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when sz == 0.

STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXP.

1 sz 0 0 1 0 0 0 0 0 1 Rs 1 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2428
ID032224 Non-Confidential

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 bits(datasize DIV 2) el1 = X[t, datasize DIV 2];
 bits(datasize DIV 2) el2 = X[t2, datasize DIV 2];
 data = if BigEndian(accdesc.acctype) then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2429
ID032224 Non-Confidential

 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2430
ID032224 Non-Confidential

C6.2.360 STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive
access to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1
if no store was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also
has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For
information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 8 << UInt(size);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXR.

1 x 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2431
ID032224 Non-Confidential

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(elsize) UNKNOWN;
 else
 data = X[t, elsize];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2432
ID032224 Non-Confidential

 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2433
ID032224 Non-Confidential

C6.2.361 STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access
to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores. The memory access is atomic. The instruction also has memory ordering
semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory
accesses, see Load/store addressing modes.

Encoding

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRB.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

0 0 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2434
ID032224 Non-Confidential

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 1, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2435
ID032224 Non-Confidential

C6.2.362 STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information
about memory accesses, see Load/store addressing modes.

Encoding

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRH.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

0 1 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2436
ID032224 Non-Confidential

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 2, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 2, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2437
ID032224 Non-Confidential

C6.2.363 STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/store addressing modes. For information about Non-temporal pair
instructions, see Load/store non-temporal pair.

32-bit variant

Applies when opc == 00.

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc<0> == '1' then UNDEFINED;
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = n != 31;

x 0 1 0 1 0 0 0 0 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2438
ID032224 Non-Confidential

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, TRUE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data1 = X[t, datasize];
 data2 = X[t2, datasize];
 address2 = GenerateAddress(address, dbytes, accdesc);
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2439
ID032224 Non-Confidential

C6.2.364 STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two
32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information about
memory accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

x 0 1 0 1 0 0 0 1 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 1 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 0 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2440
ID032224 Non-Confidential

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STP and STILP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2441
ID032224 Non-Confidential

 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown && t == n then
 data1 = bits(datasize) UNKNOWN;
 else
 data1 = X[t, datasize];
 if rt_unknown && t2 == n then
 data2 = bits(datasize) UNKNOWN;
 else
 data2 = X[t2, datasize];
 if IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 if BigEndian(accdesc.acctype) then
 full_data = data1:data2;
 else
 full_data = data2:data1;
 accdesc.ispair = TRUE;
 Mem[address, 2*dbytes, accdesc] = full_data;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2442
ID032224 Non-Confidential

C6.2.365 STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset. For information about memory accesses, see
Load/store addressing modes.

Post-index

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

1 x 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 x 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2443
ID032224 Non-Confidential

Unsigned offset

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

1 x 1 1 1 0 0 1 0 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2444
ID032224 Non-Confidential

Operation for all encodings

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2445
ID032224 Non-Confidential

C6.2.366 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

1 x 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2446
ID032224 Non-Confidential

#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

 constant integer datasize = 8 << scale;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2447
ID032224 Non-Confidential

C6.2.367 STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/store addressing modes.

Post-index

Encoding

STRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

STRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2448
ID032224 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRB (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2449
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2450
ID032224 Non-Confidential

C6.2.368 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/store
addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

Extended register variant

Applies when option != 011.

STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option == 011.

STRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 0 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2451
ID032224 Non-Confidential

Operation

 bits(64) offset = ExtendReg(m, extend_type, 0, 64);
 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2452
ID032224 Non-Confidential

C6.2.369 STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The
address that is used for the store is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/store addressing modes.

Post-index

Encoding

STRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

STRH <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

STRH <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

0 1 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 1 0 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2453
ID032224 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRH (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2454
ID032224 Non-Confidential

 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2455
ID032224 Non-Confidential

C6.2.370 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see
Load/store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

Encoding

STRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 1 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2456
ID032224 Non-Confidential

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2457
ID032224 Non-Confidential

C6.2.371 STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back
to memory.

• STSET does not have release semantics.

• STSETL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSET, LDSETA, LDSETAL, LDSETL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL,
LDSETL.

• The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDSET alias variant

Applies when size == 10 && R == 0.

STSET <Ws>, [<Xn|SP>]

 is equivalent to

LDSET <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSETL alias variant

Applies when size == 10 && R == 1.

STSETL <Ws>, [<Xn|SP>]

 is equivalent to

LDSETL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSET alias variant

Applies when size == 11 && R == 0.

STSET <Xs>, [<Xn|SP>]

 is equivalent to

LDSET <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2458
ID032224 Non-Confidential

64-bit LDSETL alias variant

Applies when size == 11 && R == 1.

STSETL <Xs>, [<Xn|SP>]

 is equivalent to

LDSETL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2459
ID032224 Non-Confidential

C6.2.372 STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
OR with the value held in a register on it, and stores the result back to memory.

• STSETB does not have release semantics.

• STSETLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSETB, LDSETAB, LDSETALB, LDSETLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

• The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSETB <Ws>, [<Xn|SP>]

 is equivalent to

LDSETB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSETLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSETLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2460
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2461
ID032224 Non-Confidential

C6.2.373 STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSETH does not have release semantics.

• STSETLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSETH, LDSETAH, LDSETALH, LDSETLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

• The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSETH <Ws>, [<Xn|SP>]

 is equivalent to

LDSETH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSETLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSETLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2462
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2463
ID032224 Non-Confidential

C6.2.374 STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as signed numbers.

• STSMAX does not have release semantics.

• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL.

• The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDSMAX alias variant

Applies when size == 10 && R == 0.

STSMAX <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMAXL alias variant

Applies when size == 10 && R == 1.

STSMAXL <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMAX alias variant

Applies when size == 11 && R == 0.

STSMAX <Xs>, [<Xn|SP>]

 is equivalent to

LDSMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2464
ID032224 Non-Confidential

64-bit LDSMAXL alias variant

Applies when size == 11 && R == 1.

STSMAXL <Xs>, [<Xn|SP>]

 is equivalent to

LDSMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2465
ID032224 Non-Confidential

C6.2.375 STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

• STSMAXB does not have release semantics.

• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB instruction. This
means that:

• The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB.

• The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMAXB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMAXLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2466
ID032224 Non-Confidential

Operation

The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2467
ID032224 Non-Confidential

C6.2.376 STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers.

• STSMAXH does not have release semantics.

• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH instruction. This
means that:

• The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH.

• The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMAXH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMAXLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2468
ID032224 Non-Confidential

Operation

The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2469
ID032224 Non-Confidential

C6.2.377 STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as signed numbers.

• STSMIN does not have release semantics.

• STSMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMIN, LDSMINA, LDSMINAL, LDSMINL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL,
LDSMINL.

• The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDSMIN alias variant

Applies when size == 10 && R == 0.

STSMIN <Ws>, [<Xn|SP>]

 is equivalent to

LDSMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMINL alias variant

Applies when size == 10 && R == 1.

STSMINL <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMIN alias variant

Applies when size == 11 && R == 0.

STSMIN <Xs>, [<Xn|SP>]

 is equivalent to

LDSMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2470
ID032224 Non-Confidential

64-bit LDSMINL alias variant

Applies when size == 11 && R == 1.

STSMINL <Xs>, [<Xn|SP>]

 is equivalent to

LDSMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2471
ID032224 Non-Confidential

C6.2.378 STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

• STSMINB does not have release semantics.

• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB instruction. This means
that:

• The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB.

• The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMINB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMINLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2472
ID032224 Non-Confidential

Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2473
ID032224 Non-Confidential

C6.2.379 STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers.

• STSMINH does not have release semantics.

• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH instruction. This means
that:

• The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH.

• The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMINH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMINLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2474
ID032224 Non-Confidential

Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2475
ID032224 Non-Confidential

C6.2.380 STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

STTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

1 x 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2476
ID032224 Non-Confidential

Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2477
ID032224 Non-Confidential

C6.2.381 STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 0 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2478
ID032224 Non-Confidential

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2479
ID032224 Non-Confidential

C6.2.382 STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used
for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 1 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2480
ID032224 Non-Confidential

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2481
ID032224 Non-Confidential

C6.2.383 STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as unsigned numbers.

• STUMAX does not have release semantics.

• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL.

• The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDUMAX alias variant

Applies when size == 10 && R == 0.

STUMAX <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMAXL alias variant

Applies when size == 10 && R == 1.

STUMAXL <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMAX alias variant

Applies when size == 11 && R == 0.

STUMAX <Xs>, [<Xn|SP>]

 is equivalent to

LDUMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2482
ID032224 Non-Confidential

64-bit LDUMAXL alias variant

Applies when size == 11 && R == 1.

STUMAXL <Xs>, [<Xn|SP>]

 is equivalent to

LDUMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2483
ID032224 Non-Confidential

C6.2.384 STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

• STUMAXB does not have release semantics.

• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB instruction. This
means that:

• The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB.

• The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMAXB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2484
ID032224 Non-Confidential

Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2485
ID032224 Non-Confidential

C6.2.385 STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers.

• STUMAXH does not have release semantics.

• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses see Load/store addressing modes.

This instruction is an alias of the LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH instruction. This
means that:

• The encodings in this description are named to match the encodings of LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH.

• The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMAXH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2486
ID032224 Non-Confidential

Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2487
ID032224 Non-Confidential

C6.2.386 STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as unsigned numbers.

• STUMIN does not have release semantics.

• STUMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMIN, LDUMINA, LDUMINAL, LDUMINL instruction. This means that:

• The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
LDUMINL.

• The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDUMIN alias variant

Applies when size == 10 && R == 0.

STUMIN <Ws>, [<Xn|SP>]

 is equivalent to

LDUMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMINL alias variant

Applies when size == 10 && R == 1.

STUMINL <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMIN alias variant

Applies when size == 11 && R == 0.

STUMIN <Xs>, [<Xn|SP>]

 is equivalent to

LDUMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2488
ID032224 Non-Confidential

64-bit LDUMINL alias variant

Applies when size == 11 && R == 1.

STUMINL <Xs>, [<Xn|SP>]

 is equivalent to

LDUMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2489
ID032224 Non-Confidential

C6.2.387 STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

• STUMINB does not have release semantics.

• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB.

• The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMINB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMINLB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2490
ID032224 Non-Confidential

Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2491
ID032224 Non-Confidential

C6.2.388 STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as unsigned numbers.

• STUMINH does not have release semantics.

• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH.

• The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMINH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMINLH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2492
ID032224 Non-Confidential

Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2493
ID032224 Non-Confidential

C6.2.389 STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

STUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else

1 x 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2494
ID032224 Non-Confidential

 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2495
ID032224 Non-Confidential

C6.2.390 STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores
a byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/store
addressing modes.

Encoding

STURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2496
ID032224 Non-Confidential

C6.2.391 STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see
Load/store addressing modes.

Encoding

STURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2497
ID032224 Non-Confidential

C6.2.392 STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory
location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. For information on single-copy
atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses.
If a 64-bit pair Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory location
being updated. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when sz == 0.

STXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXP.

1 sz 0 0 1 0 0 0 0 0 1 Rs 0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2498
ID032224 Non-Confidential

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 bits(datasize DIV 2) el1 = X[t, datasize DIV 2];
 bits(datasize DIV 2) el2 = X[t2, datasize DIV 2];
 data = if BigEndian(accdesc.acctype) then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2499
ID032224 Non-Confidential

 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2500
ID032224 Non-Confidential

C6.2.393 STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores. For information about memory accesses, see Load/store
addressing modes.

32-bit variant

Applies when size == 10.

STXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 8 << UInt(size);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXR.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 x 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2501
ID032224 Non-Confidential

1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(elsize) UNKNOWN;
 else
 data = X[t, elsize];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2502
ID032224 Non-Confidential

 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2503
ID032224 Non-Confidential

C6.2.394 STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/store addressing modes.

Encoding

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXRB.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

0 0 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2504
ID032224 Non-Confidential

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 1, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2505
ID032224 Non-Confidential

C6.2.395 STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/store addressing modes.

Encoding

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

0 1 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2506
ID032224 Non-Confidential

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 2, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 2, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2507
ID032224 Non-Confidential

C6.2.396 STZ2G

Store Allocation Tags, Zeroing stores an Allocation Tag to two Tag granules of memory, zeroing the associated data
locations. The address used for the store is calculated from the base register and an immediate signed offset scaled
by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STZ2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 1 1 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 1 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 1 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2508
ID032224 Non-Confidential

Encoding

STZ2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, TAG_GRANULE, accdesc);

 if !IsAligned(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 Mem[address, TAG_GRANULE, accdesc] = Zeros(TAG_GRANULE * 8);
 Mem[address2, TAG_GRANULE, accdesc] = Zeros(TAG_GRANULE * 8);

 AArch64.MemTag[address, accdesc] = tag;
 AArch64.MemTag[address2, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2509
ID032224 Non-Confidential

C6.2.397 STZG

Store Allocation Tag, Zeroing stores an Allocation Tag to memory, zeroing the associated data location. The address
used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The
Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STZG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STZG <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 0 1 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 1 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 1 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2510
ID032224 Non-Confidential

Encoding

STZG <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if !IsAligned(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 Mem[address, TAG_GRANULE, accdesc] = Zeros(TAG_GRANULE * 8);

 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);
 AArch64.MemTag[address, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2511
ID032224 Non-Confidential

C6.2.398 STZGM

Store Tag and Zero Multiple writes a naturally aligned block of N Allocation Tags and stores zero to the associated
data locations, where the size of N is identified in DCZID_EL0.BS, and the Allocation Tag is taken from the source
register bits<3:0>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Integer

(FEAT_MTE2)

Encoding

STZGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE2) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = X[t, 64];
 bits(4) tag = data<3:0>;
 bits(64) address;
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 integer size = 4 * (2 ^ (UInt(DCZID_EL0.BS)));
 address = Align(address, size);
 integer count = size >> LOG2_TAG_GRANULE;
 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 for i = 0 to count-1
 AArch64.MemTag[address, accdesc] = tag;
 Mem[address, TAG_GRANULE, accdesc] = Zeros(8 * TAG_GRANULE);
 address = GenerateAddress(address, TAG_GRANULE, accdesc);

1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2512
ID032224 Non-Confidential

C6.2.399 SUB (extended register)

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when sf == 0.

SUB <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

SUB <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 1 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2513
ID032224 Non-Confidential

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2514
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2515
ID032224 Non-Confidential

C6.2.400 SUB (immediate)

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes the result to
the destination register.

32-bit variant

Applies when sf == 0.

SUB <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

SUB <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2;

 operand2 = NOT(imm);
 (result, -) = AddWithCarry(operand1, operand2, '1');

sf 1 0 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2516
ID032224 Non-Confidential

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2517
ID032224 Non-Confidential

C6.2.401 SUB (shifted register)

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes the result
to the destination register.

This instruction is used by the alias NEG (shifted register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUB <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

SUB <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

NEG (shifted register) Rn == '11111'

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2518
ID032224 Non-Confidential

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2519
ID032224 Non-Confidential

C6.2.402 SUBG

Subtract with Tag subtracts an immediate value scaled by the Tag granule from the address in the source register,
modifies the Logical Address Tag of the address using an immediate value, and writes the result to the destination
register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical
Address Tag.

Integer

(FEAT_MTE)

Encoding

SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
 bits(16) exclude = GCR_EL1.Exclude;
 bits(64) result;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
 else
 rtag = '0000';

 (result, -) = AddWithCarry(operand1, NOT(offset), '1');

 result = AArch64.AddressWithAllocationTag(result, rtag);

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

1 1 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0

op3

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2520
ID032224 Non-Confidential

C6.2.403 SUBP

Subtract Pointer subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, sign-extends the result to 64-bits, and writes the result to the destination register.

Integer

(FEAT_MTE)

Encoding

SUBP <Xd>, <Xn|SP>, <Xm|SP>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) operand2 = if m == 31 then SP[] else X[m, 64];
 operand1 = SignExtend(operand1<55:0>, 64);
 operand2 = SignExtend(operand2<55:0>, 64);

 bits(64) result;

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 X[d, 64] = result;

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2521
ID032224 Non-Confidential

C6.2.404 SUBPS

Subtract Pointer, setting Flags subtracts the 56-bit address held in the second source register from the 56-bit address
held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination register. It
updates the condition flags based on the result of the subtraction.

This instruction is used by the alias CMPP. See Alias conditions for details of when each alias is preferred.

Integer

(FEAT_MTE)

Encoding

SUBPS <Xd>, <Xn|SP>, <Xm|SP>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) operand2 = if m == 31 then SP[] else X[m, 64];
 operand1 = SignExtend(operand1<55:0>, 64);
 operand2 = SignExtend(operand2<55:0>, 64);

 bits(64) result;
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;
 X[d, 64] = result;

Alias is preferred when

CMPP S == '1' && Xd == '11111'

1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2522
ID032224 Non-Confidential

C6.2.405 SUBS (extended register)

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by an optional
left shift amount, from a register value, and writes the result to the destination register. The argument that is extended
from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result.

This instruction is used by the alias CMP (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

Alias is preferred when

CMP (extended register) Rd == '11111'

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2523
ID032224 Non-Confidential

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2524
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2525
ID032224 Non-Confidential

C6.2.406 SUBS (immediate)

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMP (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Alias is preferred when

CMP (immediate) Rd == '11111'

sf 1 1 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2526
ID032224 Non-Confidential

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2;
 bits(4) nzcv;

 operand2 = NOT(imm);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2527
ID032224 Non-Confidential

C6.2.407 SUBS (shifted register)

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register value, and
writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the aliases CMP (shifted register) and NEGS. See Alias conditions for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

CMP (shifted register) Rd == '11111'

NEGS Rn == '11111' && Rd != '11111'

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2528
ID032224 Non-Confidential

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2529
ID032224 Non-Confidential

C6.2.408 SVC

Supervisor Call causes an exception to be taken to EL1.

On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the
EC value 0x15, and the value of the immediate argument.

Encoding

SVC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.CheckForSVCTrap(imm16);
 AArch64.CallSupervisor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2530
ID032224 Non-Confidential

C6.2.409 SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location,
and stores the value held in a register back to the same memory location. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire semantics.

• SWPL and SWPAL store to memory with release semantics.

• SWP has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LSE)

32-bit SWP variant

Applies when size == 10 && A == 0 && R == 0.

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPA variant

Applies when size == 10 && A == 1 && R == 0.

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPAL variant

Applies when size == 10 && A == 1 && R == 1.

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPL variant

Applies when size == 10 && A == 0 && R == 1.

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit SWP variant

Applies when size == 11 && A == 0 && R == 0.

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPA variant

Applies when size == 11 && A == 1 && R == 0.

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPAL variant

Applies when size == 11 && A == 1 && R == 1.

SWPAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2531
ID032224 Non-Confidential

64-bit SWPL variant

Applies when size == 11 && A == 0 && R == 1.

SWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 bits(datasize) store_value;
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = X[s, datasize];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 X[t, regsize] = ZeroExtend(data, regsize);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2532
ID032224 Non-Confidential

C6.2.410 SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register
back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.

• SWPLB and SWPALB store to memory with release semantics.

• SWPB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LSE)

SWPAB variant

Applies when A == 1 && R == 0.

SWPAB <Ws>, <Wt>, [<Xn|SP>]

SWPALB variant

Applies when A == 1 && R == 1.

SWPALB <Ws>, <Wt>, [<Xn|SP>]

SWPB variant

Applies when A == 0 && R == 0.

SWPB <Ws>, <Wt>, [<Xn|SP>]

SWPLB variant

Applies when A == 0 && R == 1.

SWPLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2533
ID032224 Non-Confidential

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;
 bits(8) store_value;
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = X[s, 8];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 X[t, 32] = ZeroExtend(data, 32);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2534
ID032224 Non-Confidential

C6.2.411 SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in
a register back to the same memory location. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.

• SWPLH and SWPALH store to memory with release semantics.

• SWPH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LSE)

SWPAH variant

Applies when A == 1 && R == 0.

SWPAH <Ws>, <Wt>, [<Xn|SP>]

SWPALH variant

Applies when A == 1 && R == 1.

SWPALH <Ws>, <Wt>, [<Xn|SP>]

SWPH variant

Applies when A == 0 && R == 0.

SWPH <Ws>, <Wt>, [<Xn|SP>]

SWPLH variant

Applies when A == 0 && R == 1.

SWPLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2535
ID032224 Non-Confidential

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;
 bits(16) store_value;
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = X[s, 16];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 X[t, 32] = ZeroExtend(data, 32);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2536
ID032224 Non-Confidential

C6.2.412 SWPP, SWPPA, SWPPAL, SWPPL

Swap quadword in memory atomically loads a 128-bit quadword from a memory location, and stores the value held
in a pair of registers back to the same memory location. The value initially loaded from memory is returned in the
same pair of registers.

• SWPPA and SWPPAL load from memory with acquire semantics.

• SWPPL and SWPPAL store to memory with release semantics.

• SWPP has neither acquire nor release semantics.

Integer

(FEAT_LSE128)

SWPP variant

Applies when A == 0 && R == 0.

SWPP <Xt1>, <Xt2>, [<Xn|SP>]

SWPPA variant

Applies when A == 1 && R == 0.

SWPPA <Xt1>, <Xt2>, [<Xn|SP>]

SWPPAL variant

Applies when A == 1 && R == 1.

SWPPAL <Xt1>, <Xt2>, [<Xn|SP>]

SWPPL variant

Applies when A == 0 && R == 1.

SWPPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE128) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2537
ID032224 Non-Confidential

 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) value1 = X[t, 64];
 bits(64) value2 = X[t2, 64];
 bits(128) data;
 bits(128) store_value;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) comparevalue = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 if rt_unknown then
 data = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = data<127:64>;
 X[t2, 64] = data<63:0>;
 else
 X[t, 64] = data<63:0>;
 X[t2, 64] = data<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2538
ID032224 Non-Confidential

C6.2.413 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and writes the
result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SXTB <Wd>, <Wn>

 is equivalent to

SBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1.

SXTB <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc immr imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2539
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2540
ID032224 Non-Confidential

C6.2.414 SXTH

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the result to the
destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SXTH <Wd>, <Wn>

 is equivalent to

SBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1.

SXTH <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc immr imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2541
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2542
ID032224 Non-Confidential

C6.2.415 SXTW

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

64-bit variant

SXTW <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #31

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2543
ID032224 Non-Confidential

C6.2.416 SYS

System instruction. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions for the
encodings of System instructions.

This instruction is used by the aliases AT, BRB, CFP, COSP, CPP, DC, DVP, GCSPOPCX, GCSPOPX,
GCSPUSHM, GCSPUSHX, GCSSS1, IC, TLBI, and TRCIT. See Alias conditions for details of when each alias is
preferred.

Encoding

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

Decode for this encoding

 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2544
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

 AArch64.SysInstr(1, sys_op1, sys_crn, sys_crm, sys_op2, t);

Alias is preferred when

AT CRn == '0111' && CRm == '100x' && SysOp(op1,'0111',CRm,op2) == Sys_AT

BRB op1 == '001' && CRn == '0111' && CRm == '0010' && SysOp('001','0111','0010',op2) ==
Sys_BRB

CFP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '100'

COSP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '110'

CPP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '111'

DC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_DC

DVP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '101'

GCSPOPCX op1 == '000' && CRn == '0111' && CRm == '0111' && op2 == '101'

GCSPOPX op1 == '000' && CRn == '0111' && CRm == '0111' && op2 == '110'

GCSPUSHM op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '000'

GCSPUSHX op1 == '000' && CRn == '0111' && CRm == '0111' && op2 == '100'

GCSSS1 op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '010'

IC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_IC

TLBI CRn == '100x' && SysOp(op1,CRn,CRm,op2) == Sys_TLBI

TRCIT op1 == '011' && CRn == '0111' && CRm == '0010' && op2 == '111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2545
ID032224 Non-Confidential

C6.2.417 SYSL

System instruction with result. For more information, see op0==0b01, cache maintenance, TLB maintenance,
address translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions for the
encodings of System instructions.

This instruction is used by the aliases GCSPOPM and GCSSS2. See Alias conditions for details of when each alias
is preferred.

Encoding

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

Decode for this encoding

 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Alias conditions

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 // No architecturally defined instructions here.
 AArch64.SysInstrWithResult(1, sys_op1, sys_crn, sys_crm, sys_op2, t);

Alias is preferred when

GCSPOPM op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '001'

GCSSS2 op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '011'

1 1 0 1 0 1 0 1 0 0 1 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2546
ID032224 Non-Confidential

C6.2.418 SYSP

128-bit System instruction.

This instruction is used by the alias TLBIP. See Alias conditions for details of when each alias is preferred.

System

(FEAT_SYSINSTR128)

Encoding

SYSP #<op1>, <Cn>, <Cm>, #<op2>{, <Xt1>, <Xt2>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SYSINSTR128) then UNDEFINED;
 if Rt<0> == '1' && Rt != '11111' then UNDEFINED;
 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);
 integer t2 = if t == 31 then 31 else UInt(Rt) + 1;

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Alias conditions

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 6, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 8 to 9, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 7, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt1> Is the 64-bit name of the first optional general-purpose source register, defaulting to '11111',
encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second optional general-purpose source register, defaulting to '11111',
encoded as "Rt" +1. Defaults to '11111' if "Rt" = '11111'.

Operation

 AArch64.SysInstr128(1, sys_op1, sys_crn, sys_crm, sys_op2, t, t2);

Alias is preferred when

TLBIP CRn == '100x' && SysOp(op1,CRn,CRm,op2) == Sys_TLBIP

1 1 0 1 0 1 0 1 0 1 0 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2547
ID032224 Non-Confidential

C6.2.419 TBNZ

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and conditionally
branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine
call or return. This instruction does not affect condition flags.

Encoding

TBNZ <R><t>, #<imm>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 constant integer datasize = 32 << UInt(b5);
 integer bit_pos = UInt(b5:b40);
 bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R> Is a width specifier, encoded in the "b5" field. It can have the following values:

W when b5 = 0

X when b5 = 1

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted
when the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in
the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-32KB, is encoded as "imm14" times 4.

Operation

 bits(datasize) operand = X[t, datasize];
 if operand<bit_pos> == op then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

b5 0 1 1 0 1 1 1 b40 imm14 Rt

31 30 29 28 27 26 25 24 23 19 18 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2548
ID032224 Non-Confidential

C6.2.420 TBZ

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

Encoding

TBZ <R><t>, #<imm>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 constant integer datasize = 32 << UInt(b5);
 integer bit_pos = UInt(b5:b40);
 bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R> Is a width specifier, encoded in the "b5" field. It can have the following values:

W when b5 = 0

X when b5 = 1

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted
when the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in
the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-32KB, is encoded as "imm14" times 4.

Operation

 bits(datasize) operand = X[t, datasize];
 if operand<bit_pos> == op then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

b5 0 1 1 0 1 1 0 b40 imm14 Rt

31 30 29 28 27 26 25 24 23 19 18 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2549
ID032224 Non-Confidential

C6.2.421 TCANCEL

This instruction exits Transactional state and discards all state modifications that were performed transactionally.
Execution continues at the instruction that follows the TSTART instruction of the outer transaction. The destination
register of the TSTART instruction of the outer transaction is written with the immediate operand of TCANCEL.

System

(FEAT_TME)

Encoding

TCANCEL #<imm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;
 boolean retry = (imm16<15> == '1');
 bits(15) reason = imm16<14:0>;

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 if !IsTMEEnabled() then UNDEFINED;

 if TSTATE.depth > 0 then
 FailTransaction(TMFailure_CNCL, retry, FALSE, reason);

1 1 0 1 0 1 0 0 0 1 1 imm16 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2550
ID032224 Non-Confidential

C6.2.422 TCOMMIT

This instruction commits the current transaction. If the current transaction is an outer transaction, then Transactional
state is exited, and all state modifications performed transactionally are committed to the architectural state.
TCOMMIT takes no inputs and returns no value.

Execution of TCOMMIT is UNDEFINED in Non-transactional state.

System

(FEAT_TME)

Encoding

TCOMMIT

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;

Operation

 if !IsTMEEnabled() then UNDEFINED;

 if TSTATE.depth == 0 then
 UNDEFINED;

 if TSTATE.depth == 1 then
 CommitTransactionalWrites();
 ClearExclusiveLocal(ProcessorID());

 TSTATE.depth = TSTATE.depth - 1;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2551
ID032224 Non-Confidential

C6.2.423 TLBI

TLB Invalidate operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

TLBI <tlbi_op>{, <Xt>}

 is equivalent to

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,CRn,CRm,op2) == Sys_TLBI.

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbi_op> Is a TLBI instruction name, as listed for the TLBI system instruction group, encoded in the
"op1:CRn:CRm:op2" field. It can have the following values:

VMALLE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 000

VAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 001

ASIDE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 010

VAAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 011

VALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 101

VAALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 111

VMALLE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 000

VAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 001

ASIDE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 010

VAAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 011

VALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 101

VAALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 111

IPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 001

IPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 101

ALLE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 000

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 1 0 0 x CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2552
ID032224 Non-Confidential

VAE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 001

ALLE1IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 100

VALE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 101

VMALLS12E1IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 110

IPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 001

IPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 101

ALLE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 000

VAE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 001

ALLE1 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 100

VALE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 101

VMALLS12E1 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 110

ALLE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 000

VAE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 001

VALE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 101

ALLE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 000

VAE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 001

VALE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 101

When FEAT_TLBIOS is implemented, the following values are also valid:

VMALLE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 000

VAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 001

ASIDE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 010

VAAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 011

VALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 101

VAALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 111

ALLE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 000

VAE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 001

ALLE1OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 100

VALE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 101

VMALLS12E1OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 110

IPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 000

IPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 100

ALLE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 000

VAE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 001

VALE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 101

When FEAT_TLBIRANGE is implemented, the following values are also valid:

RVAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 001

RVAAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 011

RVALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 101

RVAALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 111

RVAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 001

RVAAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 011

RVALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 101

RVAALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 111

RVAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 001

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2553
ID032224 Non-Confidential

RVAAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 011

RVALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 101

RVAALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 111

RIPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 010

RIPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 110

RVAE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 001

RVALE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 101

RIPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 010

RIPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 011

RIPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 110

RIPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 111

RVAE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 001

RVALE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 101

RVAE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 001

RVALE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 101

RVAE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 001

RVALE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 101

RVAE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 001

RVALE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 101

RVAE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 001

RVALE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 101

When FEAT_XS is implemented, the following values are also valid:

VMALLE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 000

VAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 001

ASIDE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 010

VAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 011

VALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 101

VAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 111

RVAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 001

RVAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 011

RVALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 101

RVAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 111

VMALLE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 000

VAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 001

ASIDE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 010

VAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 011

VALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 101

VAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 111

RVAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 001

RVAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 011

RVALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 101

RVAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 111

RVAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 001

RVAAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 011

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2554
ID032224 Non-Confidential

RVALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 101

RVAALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 111

VMALLE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 000

VAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 001

ASIDE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 010

VAAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 011

VALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 101

VAALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 111

IPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 001

RIPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 010

IPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 101

RIPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 110

ALLE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 000

VAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 001

ALLE1OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 100

VALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 101

VMALLS12E1OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 110

RVAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 001

RVALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 101

ALLE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 000

VAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 001

ALLE1ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 100

VALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 101

VMALLS12E1ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 110

IPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 000

IPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 001

RIPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 010

RIPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 011

IPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 100

IPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 101

RIPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 110

RIPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 111

RVAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 001

RVALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 101

RVAE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 001

RVALE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 101

ALLE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 000

VAE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 001

ALLE1NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 100

VALE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 101

VMALLS12E1NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 110

ALLE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 000

VAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 001

VALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 101

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2555
ID032224 Non-Confidential

RVAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 001

RVALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 101

ALLE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 000

VAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 001

VALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 101

RVAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 001

RVALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 101

RVAE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 001

RVALE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 101

ALLE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 000

VAE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 001

VALE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 101

When FEAT_RME is implemented, the following values are also valid:

PAALLOS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 100

RPAOS when op1 = 110, CRn = 1000, CRm = 0100, op2 = 011

RPALOS when op1 = 110, CRn = 1000, CRm = 0100, op2 = 111

PAALL when op1 = 110, CRn = 1000, CRm = 0111, op2 = 100

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2556
ID032224 Non-Confidential

C6.2.424 TLBIP

TLB Invalidate Pair operation.

This instruction is an alias of the SYSP instruction. This means that:

• The encodings in this description are named to match the encodings of SYSP.

• The description of SYSP gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

System

(FEAT_D128)

Encoding

TLBIP <tlbip_op>{, <Xt1>, <Xt2>}

 is equivalent to

SYSP #<op1>, <Cn>, <Cm>, #<op2>{, <Xt1>, <Xt2>}

and is the preferred disassembly when SysOp(op1,CRn,CRm,op2) == Sys_TLBIP.

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 6, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 8 to 9, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 7, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbip_op> Is a TLBIP instruction name, as listed for the TLBIP system pair instruction group, encoded in the
"op1:CRn:CRm:op2" field. It can have the following values:

VAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 001

VAAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 011

VALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 101

VAALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 111

RVAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 001

RVAAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 011

RVALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 101

RVAALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 111

VAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 001

VAAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 011

VALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 101

VAALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 111

RVAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 001

RVAAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 011

RVALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 101

1 1 0 1 0 1 0 1 0 1 0 0 1 op1 1 0 0 x CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2557
ID032224 Non-Confidential

RVAALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 111

RVAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 001

RVAAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 011

RVALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 101

RVAALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 111

VAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 001

VAAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 011

VALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 101

VAALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 111

VAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 001

VAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 011

VALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 101

VAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 111

RVAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 001

RVAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 011

RVALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 101

RVAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 111

VAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 001

VAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 011

VALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 101

VAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 111

RVAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 001

RVAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 011

RVALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 101

RVAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 111

RVAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 001

RVAAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 011

RVALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 101

RVAALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 111

VAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 001

VAAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 011

VALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 101

VAALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 111

IPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 001

RIPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 010

IPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 101

RIPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 110

VAE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 001

VALE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 101

RVAE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 001

RVALE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 101

VAE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 001

VALE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 101

IPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 000

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2558
ID032224 Non-Confidential

IPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 001

RIPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 010

RIPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 011

IPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 100

IPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 101

RIPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 110

RIPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 111

RVAE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 001

RVALE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 101

RVAE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 001

RVALE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 101

VAE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 001

VALE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 101

IPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 001

RIPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 010

IPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 101

RIPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 110

VAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 001

VALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 101

RVAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 001

RVALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 101

VAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 001

VALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 101

IPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 000

IPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 001

RIPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 010

RIPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 011

IPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 100

IPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 101

RIPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 110

RIPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 111

RVAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 001

RVALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 101

RVAE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 001

RVALE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 101

VAE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 001

VALE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 101

VAE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 001

VALE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 101

RVAE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 001

RVALE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 101

VAE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 001

VALE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 101

RVAE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 001

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2559
ID032224 Non-Confidential

RVALE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 101

RVAE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 001

RVALE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 101

VAE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 001

VALE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 101

VAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 001

VALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 101

RVAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 001

RVALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 101

VAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 001

VALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 101

RVAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 001

RVALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 101

RVAE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 001

RVALE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 101

VAE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 001

VALE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 101

<Xt1> Is the 64-bit name of the first optional general-purpose source register, defaulting to '11111',
encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second optional general-purpose source register, defaulting to '11111',
encoded as "Rt" +1. Defaults to '11111' if "Rt" = '11111'.

Operation

The description of SYSP gives the operational pseudocode for this instruction.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2560
ID032224 Non-Confidential

C6.2.425 TRCIT

Trace Instrumentation generates an instrumentation trace packet that contains the value of the provided register.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_ITE)

Encoding

TRCIT <Xt>

 is equivalent to

SYS #3, C7, C2, #7, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2561
ID032224 Non-Confidential

C6.2.426 TSB

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions, see
Trace Synchronization Barrier (TSB).

If FEAT_TRF is not implemented, this instruction executes as a NOP.

System

(FEAT_TRF)

Encoding

TSB CSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TRF) then EndOfInstruction();

Operation

 TraceSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2562
ID032224 Non-Confidential

C6.2.427 TST (immediate)

Test bits (immediate) , setting the condition flags and discarding the result : Rn AND imm

This instruction is an alias of the ANDS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS (immediate).

• The description of ANDS (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

TST <Wn>, #<imm>

 is equivalent to

ANDS WZR, <Wn>, #<imm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

TST <Xn>, #<imm>

 is equivalent to

ANDS XZR, <Xn>, #<imm>

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

The description of ANDS (immediate) gives the operational pseudocode for this instruction.

sf 1 1 1 0 0 1 0 0 N immr imms Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2563
ID032224 Non-Confidential

C6.2.428 TST (shifted register)

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted register value.
It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ANDS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS (shifted register).

• The description of ANDS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

TST <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

ANDS WZR, <Wn>, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

TST <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

ANDS XZR, <Xn>, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N Rd

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2564
ID032224 Non-Confidential

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2565
ID032224 Non-Confidential

C6.2.429 TSTART

This instruction starts a new transaction. If the transaction started successfully, the destination register is set to zero.
If the transaction failed or was canceled, then all state modifications that were performed transactionally are
discarded and the destination register is written with a nonzero value that encodes the cause of the failure.

System

(FEAT_TME)

Encoding

TSTART <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

 if !IsTMEEnabled() then UNDEFINED;

 boolean IsEL1Regime;
 bit tme;
 bit tmt;
 case PSTATE.EL of
 when EL0
 IsEL1Regime = S1TranslationRegime() == EL1;
 if IsEL1Regime then
 tme = SCTLR_EL1.TME0;
 tmt = SCTLR_EL1.TMT0;
 else
 tme = SCTLR_EL2.TME0;
 tmt = SCTLR_EL2.TMT0;
 when EL1
 tme = SCTLR_EL1.TME;
 tmt = SCTLR_EL1.TMT;
 when EL2
 tme = SCTLR_EL2.TME;
 tmt = SCTLR_EL2.TMT;
 when EL3
 tme = SCTLR_EL3.TME;
 tmt = SCTLR_EL3.TMT;
 otherwise
 Unreachable();

 boolean enable = tme == '1';
 boolean trivial = tmt == '1';

 if !enable then
 TransactionStartTrap(t);
 elsif trivial then
 TSTATE.nPC = NextInstrAddr(64);

1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2566
ID032224 Non-Confidential

 TSTATE.Rt = t;
 FailTransaction(TMFailure_TRIVIAL, FALSE);
 elsif IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 FailTransaction(TMFailure_ERR, FALSE);
 elsif TSTATE.depth == 255 then
 FailTransaction(TMFailure_NEST, FALSE);
 elsif TSTATE.depth == 0 then
 TSTATE.nPC = NextInstrAddr(64);
 TSTATE.Rt = t;
 ClearExclusiveLocal(ProcessorID());
 TakeTransactionCheckpoint();
 StartTrackingTransactionalReadsWrites();

 TSTATE.depth = TSTATE.depth + 1;
 X[t, 64] = Zeros(64);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2567
ID032224 Non-Confidential

C6.2.430 TTEST

This instruction writes the depth of the transaction to the destination register, or the value 0 otherwise.

System

(FEAT_TME)

Encoding

TTEST <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

 if !IsTMEEnabled() then UNDEFINED;

 X[t, 64] = (TSTATE.depth)<63:0>;

1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2568
ID032224 Non-Confidential

C6.2.431 UBFIZ

Unsigned Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits above and below the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

UBFIZ <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

UBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

UBFIZ <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

UBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2569
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2570
ID032224 Non-Confidential

C6.2.432 UBFM

Unsigned Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below and above the bitfield are set to zero.

This instruction is used by the aliases LSL (immediate), LSR (immediate), UBFIZ, UBFX, UXTB, and UXTH. See
Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

UBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

UBFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 integer r;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 r = UInt(immr);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE, datasize);

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2571
ID032224 Non-Confidential

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) src = X[n, datasize];

 // perform bitfield move on low bits
 bits(datasize) bot = ROR(src, r) AND wmask;

 // combine extension bits and result bits
 X[d, datasize] = bot AND tmask;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

Alias of variant is preferred when

LSL (immediate) 32-bit imms != '011111' && imms + 1 == immr

LSL (immediate) 64-bit imms != '111111' && imms + 1 == immr

LSR (immediate) 32-bit imms == '011111'

LSR (immediate) 64-bit imms == '111111'

UBFIZ -
UInt(imms) < UInt(immr)

UBFX -
BFXPreferred(sf, opc<1>, imms, immr)

UXTB - immr == '000000' && imms == '000111'

UXTH - immr == '000000' && imms == '001111'

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2572
ID032224 Non-Confidential

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2573
ID032224 Non-Confidential

C6.2.433 UBFX

Unsigned Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to
the least significant bits of the destination register, and sets destination bits above the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

UBFX <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

UBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

UBFX <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

UBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2574
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2575
ID032224 Non-Confidential

C6.2.434 UDF

Permanently Undefined generates an Undefined Instruction exception (ESR_ELx.EC = 0b000000). The encodings
for UDF used in this section are defined as permanently UNDEFINED.

Encoding

UDF #<imm>

Decode for this encoding

 // The imm16 field is ignored by hardware.
 UNDEFINED;

Assembler symbols

<imm> is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field. The PE
ignores the value of this constant.

Operation

 // No operation.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 imm16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2576
ID032224 Non-Confidential

C6.2.435 UDIV

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value, and writes
the result to the destination register. The condition flags are not affected.

32-bit variant

Applies when sf == 0.

UDIV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result;

 if IsZero(operand2) then
 result = 0;
 else
 result = RoundTowardsZero(Real(Int(operand1, TRUE)) / Real(Int(operand2, TRUE)));

 X[d, datasize] = result<datasize-1:0>;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2577
ID032224 Non-Confidential

C6.2.436 UMADDL

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result
to the 64-bit destination register.

This instruction is used by the alias UMULL. See Alias conditions for details of when each alias is preferred.

Encoding

UMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, TRUE) + (Int(operand1, TRUE) * Int(operand2, TRUE));

 X[d, 64] = result<63:0>;

Alias is preferred when

UMULL Ra == '11111'

1 0 0 1 1 0 1 1 1 0 1 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2578
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2579
ID032224 Non-Confidential

C6.2.437 UMAX (immediate)

Unsigned Maximum (immediate) determines the unsigned maximum of the source register value and immediate,
and writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMAX <Wd>, <Wn>, #<uimm>

64-bit variant

Applies when sf == 1.

UMAX <Xd>, <Xn>, #<uimm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = UInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<uimm> Is an unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Max(UInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 0 1 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2580
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2581
ID032224 Non-Confidential

C6.2.438 UMAX (register)

Unsigned Maximum (register) determines the unsigned maximum of the two source register values and writes the
result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMAX <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UMAX <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Max(UInt(operand1), UInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2582
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2583
ID032224 Non-Confidential

C6.2.439 UMIN (immediate)

Unsigned Minimum (immediate) determines the unsigned minimum of the source register value and immediate, and
writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMIN <Wd>, <Wn>, #<uimm>

64-bit variant

Applies when sf == 1.

UMIN <Xd>, <Xn>, #<uimm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = UInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<uimm> Is an unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Min(UInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 1 1 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2584
ID032224 Non-Confidential

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2585
ID032224 Non-Confidential

C6.2.440 UMIN (register)

Unsigned Minimum (register) determines the unsigned minimum of the two source register values and writes the
result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMIN <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UMIN <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Min(UInt(operand1), UInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2586
ID032224 Non-Confidential

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2587
ID032224 Non-Confidential

C6.2.441 UMNEGL

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to
the 64-bit destination register.

This instruction is an alias of the UMSUBL instruction. This means that:

• The encodings in this description are named to match the encodings of UMSUBL.

• The description of UMSUBL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

UMNEGL <Xd>, <Wn>, <Wm>

 is equivalent to

UMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of UMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 0 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2588
ID032224 Non-Confidential

C6.2.442 UMSUBL

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias UMNEGL. See Alias conditions for details of when each alias is preferred.

Encoding

UMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, TRUE) - (Int(operand1, TRUE) * Int(operand2, TRUE));
 X[d, 64] = result<63:0>;

Alias is preferred when

UMNEGL Ra == '11111'

1 0 0 1 1 0 1 1 1 0 1 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2589
ID032224 Non-Confidential

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2590
ID032224 Non-Confidential

C6.2.443 UMULH

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the
64-bit destination register.

Encoding

UMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

 bits(64) operand1 = X[n, 64];
 bits(64) operand2 = X[m, 64];

 integer result;

 result = Int(operand1, TRUE) * Int(operand2, TRUE);

 X[d, 64] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2591
ID032224 Non-Confidential

C6.2.444 UMULL

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the UMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of UMADDL.

• The description of UMADDL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

UMULL <Xd>, <Wn>, <Wm>

 is equivalent to

UMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of UMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 0 1 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2592
ID032224 Non-Confidential

C6.2.445 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register, and writes
the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

UXTB <Wd>, <Wn>

 is equivalent to

UBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2593
ID032224 Non-Confidential

C6.2.446 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the register, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

UXTH <Wd>, <Wn>

 is equivalent to

UBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2594
ID032224 Non-Confidential

C6.2.447 WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any
PE in the multiprocessor system. For more information, see Wait for Event.

As described in Wait for Event, the execution of a WFE instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level.

Encoding

WFE

Decode for this encoding

 // Empty.

Operation

 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFE(localtimeout, WFxType_WFE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2595
ID032224 Non-Confidential

C6.2.448 WFET

Wait For Event with Timeout is a hint instruction that indicates that the PE can enter a low-power state and remain
there until either a local timeout event or a wakeup event occurs. Wakeup events include the event signaled as a
result of executing the SEV instruction on any PE in the multiprocessor system. For more information, see Wait for
Event.

As described in Wait for Event, the execution of a WFET instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level.

System

(FEAT_WFxT)

Encoding

WFET <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_WFxT) then UNDEFINED;

 integer d = UInt(Rd);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

 integer localtimeout = UInt(X[d, 64]);

 if Halted() && ConstrainUnpredictableBool(Unpredictable_WFxTDEBUG) then
 EndOfInstruction();

 Hint_WFE(localtimeout, WFxType_WFET);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2596
ID032224 Non-Confidential

C6.2.449 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until
a wakeup event occurs. For more information, see Wait for Interrupt mechanism.

As described in Wait for Interrupt mechanism, the execution of a WFI instruction that would otherwise cause entry
to a low-power state can be trapped to a higher Exception level.

Encoding

WFI

Decode for this encoding

 // Empty.

Operation

 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFI(localtimeout, WFxType_WFI);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2597
ID032224 Non-Confidential

C6.2.450 WFIT

Wait For Interrupt with Timeout is a hint instruction that indicates that the PE can enter a low-power state and
remain there until either a local timeout event or a wakeup event occurs. For more information, see Wait for
Interrupt mechanism.

As described in Wait for Interrupt mechanism, the execution of a WFIT instruction that would otherwise cause entry
to a low-power state can be trapped to a higher Exception level.

System

(FEAT_WFxT)

Encoding

WFIT <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_WFxT) then UNDEFINED;

 integer d = UInt(Rd);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

 integer localtimeout = UInt(X[d, 64]);

 if Halted() && ConstrainUnpredictableBool(Unpredictable_WFxTDEBUG) then
 EndOfInstruction();

 Hint_WFI(localtimeout, WFxType_WFIT);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2598
ID032224 Non-Confidential

C6.2.451 XAFLAG

Convert floating-point condition flags from external format to Arm format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from an alternative representation required by some software to a form representing the
result of an Arm floating-point scalar compare instruction.

System

(FEAT_FlagM2)

Encoding

XAFLAG

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM2) then UNDEFINED;

Operation

 bit n = NOT(PSTATE.C) AND NOT(PSTATE.Z);
 bit z = PSTATE.Z AND PSTATE.C;
 bit c = PSTATE.C OR PSTATE.Z;
 bit v = NOT(PSTATE.C) AND PSTATE.Z;

 PSTATE.N = n;
 PSTATE.Z = z;
 PSTATE.C = c;
 PSTATE.V = v;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2599
ID032224 Non-Confidential

C6.2.452 XPACD, XPACI, XPACLRI

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an address. The
address is in the specified general-purpose register for XPACI and XPACD, and is in LR for XPACLRI.

The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction addresses.

Integer

(FEAT_PAuth)

XPACD variant

Applies when D == 1.

XPACD <Xd>

XPACI variant

Applies when D == 0.

XPACI <Xd>

Decode for all variants of this encoding

 boolean data = (D == '1');
 integer d = UInt(Rd);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

System

(FEAT_PAuth)

Encoding

XPACLRI

Decode for this encoding

 integer d = 30;
 boolean data = FALSE;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 D 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Rn

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2600
ID032224 Non-Confidential

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 X[d, 64] = Strip(X[d, 64], data);

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2601
ID032224 Non-Confidential

C6.2.453 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the
PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system
performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction, see The YIELD instruction.

Encoding

YIELD

Decode for this encoding

 // Empty.

Operation

 Hint_Yield();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2

